
Fast exact string matching

We will discuss

• Horspool algorithm

• Wu-Manber algorithm

2000

Fast exact string matching (2)

This exposition has been developed by C. Gröpl, G. Klau, and K. Reinert based on
the following sources, which are all recommended reading:

• Flexible Pattern Matching in Strings, Navarro, Raffinot, 2002, pages 15ff.

• A nice overview of the plethora of exact string matching algorithms with anima-
tions implemented in java can be found under http://www-igm.univ-mlv.fr/
~lecroq/string.

2001

http://www-igm.univ-mlv.fr/~lecroq/string
http://www-igm.univ-mlv.fr/~lecroq/string

Thoughts about string matching

Let’s start with the classical exact string matching problem :

Find all occurrences of a given pattern P = p1, ... , pm in a text T = t1, ... , tn,
usually with n � m.

The algorithmic ideas of exact string matching are useful to know although in com-
putational biology algorithms for approximate string matching or indexing methods
are often in use. However, in online scenarios it is often not possible to precompute
an index for finding exact matches.

String matching is known for being amenable to approaches that range from the
extremely theoretical to the extremely practical. In this lecture we will get to know
two very practical exact string matching algorithms.

2002

Thoughts about string matching (2)

Some easy terminology: Given strings x , y , and z, we say that x is a prefix of xy , a
suffix of yx , and a factor (:=substring) of yxz.

x y xy xy z

prefix suffix factor

In general, string matching algorithms follow three basic approaches. In each a
search window of the size of the pattern is slid from left to right along the text and
the pattern is searched within the window. The algorithms differ in the way the
window is shifted.

· · · · · ·

search window

T

p

2003

Thoughts about string matching (3)

1. Prefix searching. For each position of the window we search the longest prefix
of the window that is also a prefix of the pattern.

· · · · · ·

search window

forward search

T

p

2. Suffix searching. The search is conducted backwards along the search window.
On average this can avoid to read some characters of the text and leads to
sublinear average case algorithms.

· · · · · ·

search window

suffix search

T

p

3. Factor searching. The search is done backwards in the search window, looking
for the longest suffix of the window that is also a factor of the pattern.

2004

· · · · · ·

search window

factor search

T

p

Suffix based approaches

2005

Idea of the Horspool algorithm

As noted above, in the suffix based approaches we match the characters from the
back of the search window. Whenever we find a mismatch we can shift the window
in a safe way, that means without missing an occurrence of the pattern.

We present the idea of the Horspool algorithm, which is a simplification of the Boyer-
Moore algorithm.

· · · · · ·

search window

suffix search

T

p

2006

Idea of the Horspool algorithm (2)

For each position of the search window we compare the last character β with the
last character of the pattern. If they match we verify until we find the pattern or
fail on the text character σ. Then we simply shift the window according to the next
occurrence of β in the pattern.

text

pattern

u

safe shift

= =

σ

α

6=

no β in this part

β

β

no β in this part

βWhy safe?

2007

Horspool pseudocode

Input: text T of length n and pattern p of length m
Output: all occurences of p in T

Preprocessing:
for c ∈ Σ do d [c] = m;
for j ∈ 1 ... m − 1 do d [pj] = m − j

Searching:
pos = 0;
while pos ≤ n − m do

j = m;
while j > 0 ∧ tpos+j = pj do j−−;
if j = 0 then output “p occurs at position pos + 1”
pos = pos + d [tpos+m];

2008

The Horspool algorithm (2)

We notice two things:

1. The verification could also be done forward. Many implementations use built-
in memory comparison instructions of the machines (i. e. memcmp). (The java
applet also compares forward.)

2. The main loop can be “unrolled”, which means that we can first shift the search
window until its last character matches the last character of the pattern and then
perform the verification.

2009

Horspool example

pattern: announce text: cpmxannualxconferencexannounce

bmBc:
a c e f l m n o p r u x
7 1 8 8 8 8 2 4 8 8 3 8

attempt 1: attempt 5:
cpmxannualxconferencexannounce cpmxannualxconferencexannounce
.......ee
Shift by 3 (bmBc[u]) Shift by 1 (bmBc[c])

attempt 2: attempt 6:
cpmxannualxconferencexannounce cpmxannualxconferencexannounce

.......e ANNOUNCE
Shift by 8 (bmBc[x]) Shift by 8 (bmBc[e])

attempt 3:
cpmxannualxconferencexannounce cpmxannualxconferencexANNOUNCE

.......e
Shift by 2 (bmBc[n]) String length: 30

Pattern length: 8
attempt 4: Attempts: 6
cpmxannualxconferencexannounce Character comparisons: 14

a......E
Shift by 8 (bmBc[e])

2010

Experimental Map

(Gonzalo Navarro & Mathieu Raffinot, 2002)

|Σ|

2

4

8

16

32

64

2 4 8 16 32 64 128 256

DNA

English

m

Horspool

Shift-OR

BNDM∗

BOM∗∗

∗ Backward Nondeterministic DAWG Matching algorithm, factor-based, not covered in this lecture
∗∗ Backward Oracle Matching, factor-based, not covered in this lecture

2011

Thoughts about multiple exact string matching

The multiple exact string matching problem is:

Find all occurrences of a given set of r patterns P = {p1, ... , pr} in a text T =
t1, ... , tn, usually with n � mi . Each pi is a string pi = pi

1, ... , pi
mi

. We denote with

|P| the total length of all patterns, i. e. |P| =
∑r

i=1

∣∣∣pi
∣∣∣ =

∑r
i=1 mi .

As with single string matching we have three basic approaches:

1. Prefix searching. We read each character of the string with an automaton built
on the set P. For each position in the text we compute the longest prefix of the
text that is also a prefix of one of the patterns.

2. Suffix searching. A positions pos is slid along the text, from which we search
backward for a suffix of any of the strings.

3. Factor searching. A position pos is slid along the text from which we read
backwards a factor of some prefix of size lmin of the strings in P.

2012

Suffix based approaches

2013

Suffix based approaches

For single string matching, the suffix based approaches are usually faster than the
prefix based approaches, hence it is natural to extend them to sets of patterns.
The first algorithm with sublinear expected running time was that of Commentz-
Walter in 1979. It is a direct extension of the Boyer-Moore algorithm. The search
window is verfied from right to left using a trie for the set of reversed patterns,
Prev =

{
(p1)rev, ... , (pr)rev}

. Again there are three rules to determine a safe shift.

The Horspool algorithm also has a straightforward extension to multiple patterns.
But it is much less powerful matching than for a single pattern, because the prob-
ability to find any given character in one of the strings gets higher and higher with
the number of strings. A stronger extension is the Wu-Manber algorithm which is in
fact superior to other algorithms for most settings.

Do you see why the performace of the Horspool algorithm deteriorates quickly as
the number of patterns increases?

2014

Wu-Manber algorithm

Next we introduce a suffix-search based multi-pattern search algorithm, the Wu-
Manber algorithm. Recall that we want to search simultaneously for a set of r
strings P = {p1, p2, ... , pr} where each P i is a string pi = pi

1, pi
2 ... pi

mi
. Let lmin be

the minimum length of a pattern in P and lmax be the maximum length. As usual
we search in a text T = t1 ... tn.

The key idea of Wu and Manber is to use blocks of characters of length B to avoid
the weakness of the Horspool algorithm.

For each string of length B appearing at the end of the window, the algorithm
“knows” a safe shift (after some preprocessing).

2015

Wu-Manber algorithm (2)

Instead of using a table of size | Σ |B each possible block is assigned a hash value
which is used to store the blocks in hash tables. Note that | Σ |B can be quite a
large number, and the distibution of blocks is usually very unevenly.

You can ignore the hash function for a moment to catch up the main idea (i.e., take
the identity as a hash function). (Don’t forget to think about it later, though.)

2016

Wu-Manber algorithm (3)

The algorithm uses two tables SHIFT and HASH.

SHIFT (j) contains a safe shift, that means it contains the minimum of the shifts of
the blocks Bl such that j = h1(Bl). More precisely:

• If a block Bl does not appear in any string in P, we can safely shift lmin− B + 1
characters to the right. This is the default value of the table.

• If Bl appears in one of the strings of P, we find its rightmost occurrence in a
string pi , let j be the position where it ends, and set SHIFT (h1(Bl)) to mi − j .

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

t=

current text position

new text position
p1

p3

p2

SHIFT[t(i−B+1),...,t_(i)]=min{2,3,5}

2017

Wu-Manber algorithm (4)

To compute the SHIFT table consider separately each pi = pi
1 ... pi

mi
. For each

block Bl = pi
j−B+1 ... pi

j , we find its corresponding hash value h1(Bl) and store in
SHIFT (h1(Bl)) the minimum of the previous value and mi − j .

During the search phase we can shift the search positions along the text as long as
the SHIFT value is positive. When the shift is zero, the text to the left of the search
position might be one of the pattern strings.

2018

Wu-Manber algorithm (5)

The entry j in table HASH contains the indices of all patterns that end with a block
Bl with h2(Bl) = j . This table is used leter for the verification phase.

To access the possible strings, HASH(h2(Bl)) contains a list of all pattern strings
whose last block is hashed to h2(Bl). In the original paper Wu and Manber chose
h1 = h2 to save a second hash value computation.

2019

Wu-Manber pseudocode

1 WuManber(P = {p1, p2, ... , pr}, T = t1t2 ... tn)
2 // Preprocessing

3 Compute a suitable value of B (e.g. B = log|Σ|(2 · lmin · r));
4 Construct Hash tables SHIFT and HASH;
5 // Searching

6 pos = lmin;
7 while pos ≤ n do
8 i = h1(tpos−B+1 ... tpos);
9 if SHIFT [i] = 0

10 then
11 list = HASH[h2(tpos−B+1 ... tpos)];
12 Verify all patterns in list against the text;
13 pos++;
14 else
15 pos = pos + SHIFT [i];
16 fi
17 od

2020

Wu-Manber example

Assume we search for P = {announce, annual , annually} in the text T =
CPM annual conference announce. Assume we choose B = 2 and a suitable
hashfunction (exercise) and assume we are given the following tables:

ll no,ou an un,nc ua,al ly nn,nu ce *

SHIFT(BL)= 1 3 4 1 0 0 2 0 5

HASH(BL) = ce,ly al *

3,1 2 nil

Then the algorithm proceeds as follows:

2021

Wu-Manber example (2)

• CPM annual conference announce

SHIFT[an] = 4.

• CPM annual conference announce

SHIFT[al] = 0. List = HASH[al] = {2}.
Compare p2 against the string and mark its occurrence. Shift search positions
by 1.

• CPM annual conference announce

SHIFT[l] = 5.

• CPM annual conference announce

SHIFT[fe] = 5.

2022

Wu-Manber example (3)

• CPM annual conference announce

SHIFT[ce] = 0. List = HASH[ce] = {3, 1}.
Compare p1 and p3 against the text. No string matches. Shift by one.

• CPM annual conference announce

SHIFT[e] = 5.

• CPM annual conference announce

SHIFT[ou] = 3.

• CPM annual conference announce

SHIFT[ce] = 0. List = HASH[ce] = {3, 1}.
Compare p1 and p3 against the text. Test succeeds for p1. Mark its occurrence.

2023

