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Introduction to Common Lisp
Dordal rev 8/95
Lisp is a very different language from C or Pascal. Perhaps most noticeable is Lisp's unusual syntax, filled with parentheses. Lisp's use of run-time type checking and the extent to which it blurs the distinction between programs and data are two other notable differences. Lisp's interactive nature — it reads each expression you type to it, evaluates  it,  and prints the result — allow s a very different programming environment from a traditional compiled language. 

To invoke lisp on orion, type cl.  This gets you Franz Allegro Common Lisp (FACL). This should be installed on abel very soon. The command lisp on the suns gets you Carnegie-Mellon University Common Lisp (CMUCL). To terminate either kind of  lisp session, type (exit), with the parentheses.

Arithmetic in Lisp

One basic data type is the number. Numbers (and a few other things) are called atoms in Lisp. Type a number and Lisp prints it back:

* 5
5
Here is another way to get 5:

*  (+ 2 3)
5
Note the style of the function call to the + function: the entire expression is enclosed in one set of parentheses. The name of the function, +,  comes first, and then the parameters. Extra parentheses are not permitted. Lisp reads in the expression (+ 2 3), evaluates it to 5, and prints the result. The reason extra parentheses are disallowed is that "(+ 2 3)" actually denotes (as we will see later in more detail) a list  consisting of "+", "2", and "3". More parentheses (or misplaced parentheses) would lead to a different list structure. Note that no “print” statements are needed; most short Lisp programs will not do any I/O at all. The name "+" is in no way special; there is no notion of a different syntax for "operators" versus "functions". Everything is a function. 

Other arithmetic functions besides + are *, –, /, mod, float, 1+, 1–, max, min, and sqrt. Here are a few more examples:

*  (* (+ 2 3) (+ 3 4 5))
60
*  (* 3 4 (+ 2 3) (+ 1 2 3) (– (* 3 4)  5))
2520
The +, *, –, and / functions can take any number of parameters. This is actually slightly unusual in Lisp; most functions take a fixed number of parameters. For example, the 1+ function adds one to its single parameter; it gets unhappy if you give it two parameters. (Note that the name "1+" is a single string, with no spaces.)

*  (1+ 6)
7
*  (1+ 6 7)
Error in function ....
Invalid number of arguments: 2

To return to the top level of Lisp after an error, you need to do something to reset your session. In FACL, use the :reset command (this is not a function so there are no parentheses). In CMUCL, type q. 

The numbers we have been using so far are called integers, or more specifically fixnums as they are fixed-point numbers. Other types are possible. For instance, Common Lisp supports rational  numbers:

*   (/  1  3) 
;; integer division will be done
1/3

*   (– (/ 1 3) (/ 1 4))
1/12

To get floating point numbers (flonums), one can either include a floating point value or else use the float function to coerce something:

*  (/ 1.0 3)
0.33333333333333
*  (/ (float 1) 3)
0.33333333333333
Pascal and C have fixed and floating point numbers only; Lisp has another numeric type called bignums. They are like integers, but they are not restricted to 32 bits. They are restricted only by the memory available on the machine. In Common Lisp they are fully integrated with fixnums; you should never have to do anything explicit to get them.

*   (* 1001 1002 1003 1004 1005 1006 1007 1008 1009)
1045879513543049853726938880

This would overflow if done using 32-bit arithmetic only. As one last example of bignums, we illustrate the factorial function, fact; (fact n) returns the product of the integers from 1 to n. Fact is not (usually) built into Common Lisp, but is defined below. Note also the comment here; anything past a ";" on a line is ignored.

*  (fact 6)
;; should be 1*2*3*4*5*6 = 720
720
*  (fact 100)
;; This would overflow in most other languages
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000

Atoms

In the above examples we have used numeric atoms only (and functions), and have seen the types of numbers Lisp supports: fixnum/bignums, ratios, and flonums. Another type of atom is the string, such as  "hello world".  The most common kind of atom in Lisp, though, is the symbol, or symbolic atom. A symbol looks like an ordinary identifier; e.g. x, y, cost, sibling, time-of-day, *query*. Symbols can be used as variables; to assign a value to a variable the setq function is used. Symbols can also be used as values; this usage has no precise analogue in Pascal or C. Here are some examples of atoms as variables:

=> (setq x 5)
5
=> (setq y (* x x))
25
=>  x
5
=> (+ x y)
30
Whenever Lisp now reads x or y (at the prompt), it will return its value. (Note that Lisp does the same thing when it sees any expression, or even a number. In the latter case, Lisp knows that the value of 5 is 5.) Like every other function in Lisp, setq returns a value. The value is simply the value being assigned. Unlike most functions, however, setq has a side effect: the variable in question is changed.

It is possible to suppress the evaluation of atoms (or of expressions) by quoting them. This entails typing a single quote ' mark before the expression. No quote mark follows; the mark is simply a flag to Lisp that it is to read in the next atom or expression and not evaluate it.

=>  'x
x
=> x
5
=> ' (+ 2 3)

;; do not evaluate the expression
(+ 2 3)
=> 'a
a
=> a
Error: Unbound Variable: a

The last example illustrates what Lisp does about undefined variables. Note that no declarations of variables are needed.

Now let's look at assigning a symbolic value to an atom

=> (setq z 'w)
w
=> z
w
=> (setq y z)
w
=> y
w
Now the value of z, and y, is the symbol w. It would be perfectly ok for w to have its own value, say by (setq w 5), but this is not being requested here. W is itself  the value of z and y. In this case w serves more like a string value, or an enumerated type value, than an identifier. For instance, a program might contain

=> (setq name 'peter)

and thus use the symbol peter where Pascal or C would use a string. It is perfectly ok for a symbol to have itself as its value (in fact, this is what numbers do):

=> (setq x  'x)
x
=> x

;; x is evaluated, but the value of x is x
x
=> 'x

;; x is not evaluated
x
Setq is our first example of what is sometimes called a special form  (or fexpr, although Common Lisp avoids this name): it is special because not all its parameters are evaluated. In (setq x y), the variable x itself is set to the value of y: y is evaluated but x is not. This is, of course, exactly what you would expect setq to do. However, it is different from most other Lisp functions, which are called exprs. The ‘q’ in setq stands for quote; setq works as if it always quoted its first parameter.


Lists

Aside from atoms, the fundamental data type in Lisp is the list. (Lisp stands for list processing.) To form a list of objects, we just enclose them in parentheses:

=> '(a b c d)


;; a list of atoms
(a b c d)
=> (setq a ' (a b c d))
(a b c d)
=> a
(a b c d)
=> (length a)
4
We have set the atom a to have as value the list (a b c d). The fact that the atom a is also a member of this list has no special significance. Note that (a) is a one-element list and is not the same as the atom a. Lists can contain other lists:

=> (setq b '((a) (b) (c)))

;; a three-element list; each elt is a 1-elt list.
((a) (b) (c))
=> (setq c '((a b c)))


;; a one-element list; its element is (a b c)
((a b c))
=> (setq d '(a (b (c))))

;; a two-elt list. 1st elt is a, 2nd is (b (c)).
(a (b (c)))
The empty list is (); it has a special name: nil. nil is the only list that is also an atom.

The three “primitive” functions for manipulating lists are car, cdr, and cons. Car and cdr — the unintuitive names derive from assembly language opcodes — return the first element of a list and the rest of the list.

=> a

;; from above
(a b c d)
=> (car a)
;; returns first element
a
=> (cdr a)
;; returns rest of list
(b c d)
=> (cdr '(c d))
(d)
=> (cdr '(d))
nil
Note that (car a) and (cdr a) return the new element or list but they do not affect the old list. Note also that car typically returns an atom (or at least a sublist); cdr returns a shorter version of the original list. Eventually cdr — if repeated — will reach nil, as in the last example. For convenience, (cdr nil) is again nil, but conceptually nil doesn't have a car or cdr. The “opposite” of car+cdr is cons: it takes an element and a list and returns the new list formed by inserting the element on to the front of the old list:

=> (cons 'a '(b c d))
(a b c d)
It is possible for a cdr to be a non-list, but this is rare and peculiar. However, the cdr field of a cell can be any pointer; e.g. a pointer to an atom. To set the cdr to be an atom, just give cons an atom as second parameter: 

=> (cons 'a 'b)

;; WARNING!!
(a . b)
This is a dotted pair. It is not a list; the list (a b) would have been formed from (cons 'a '(b)). Normally you will see dotted pairs only by accident; the usual reason is that you used cons and the second parameter was not a list. We remark that (cons 'a nil) returns a perfectly good list, namely (a).

What is really going on behind the scenes here is that lists are formed from cells. Every cell has two fields, each containing a pointer. These fields are what are returned by car and cdr; similarly, cons allocates a new cell and initializes the car and cdr fields with the supplied parameters. Here is the pattern of cells for the list a above, = (a b c d):
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A simpler list, (a), consisting of one element, would be:
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In this picture the atoms a, b, c, d are shown directly in the car fields; in fact, the car fields actually contain pointers to the atoms. The last cdr field contains nil; this is symbolized by the x. The four elements of the list are chained together by their cdr fields; if we had sublists within the list then we would start a new chain at each opening parenthesis and terminate it with nil at the corresponding closing parenthesis. Here are diagrams of the other three lists above, b = ((a) (b) (c)), c = ((a b c)), and d = (a (b (c))).
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More list functions

Other handy functions for manipulating lists are length, reverse, last, cadr etc, nth, append, and list. Append splices together two or more lists ; list forms a list from the elements  given as parameters. List is similar to quoting a list, except if you quote a list then the elements do not get evaluated. Compare append and list to each other and to cons, which takes one element and one list.

=> a
(a b c d)
=> (length a)
4
=> (reverse a)
(d c b a)
=> (last a)

;; last element
d
=> (cadr a)

;; = (car (cdr a)). There is also caddr, cddr, cdar, etc.
b
=> (nth 2 a)

c



;; returns elt #2, starting from 0 (i.e. 3rd elt)
=> (append a '(1  2 3))
(a b c d 1 2 3)
=> (list a '(1 2 3))
((a b c d) (1 2 3))
=> (list 1 'a 'b (+ 2 3))
(1 a b 5)
=> (cons a '(1 2 3))
((a b c d) 1 2 3)
Lisp expressions are lists!

By now you have probably noticed a certain similarity between lisp syntax for functions and for lists. Compare:

(+ 2 3 4)

;; a list representing a function call
(a 2 b 5)

;; a list of mixed symbols and numbers

In fact, Lisp's expressions are indeed lists. When lisp reads in an expression, it reads in a list (or atom). It then evaluates the expression as a list (or atom): if a list, the car must be the name of the function and the cdr is the list of actual parameters. Lisp can read in data without evaluating it, but it must be quoted (or read in via explicit use of the (read) function). Unevaluated lists can also be created internally, e.g. with cons or list or append. Once a list has made it past the reader, however, it is generally safe from evaluation. Lists are evaluated only as they are read in at the prompt.

Defining simple functions

Here is how one would define a function named average, that took two parameters and took their average:

=> (defun average (x y) (/ (+ x y) 2.0))
average
=> (average 3 5)
4.0
Functions are defined using the defun function. There are three parameters: the name of the function, the parameter list, and the body, which is an expression representing the value being returned. Defun sets up the definition and returns the name of the function as its value (every Lisp function must return a value). Defun is another special form; it does not evaluate its parameters and so they do not need to be quoted. Other forms of defun can be used to define special forms, but when used as above it defines an ordinary "expr" function: one with a fixed number of parameters all of which are evaluated.

Usually, the body of the function definition is the largest part of defun. It is usually put on a following line or lines. 

If the function has no parameters, the parameter list is simply nil:

=> (defun hello nil 'hello-world)
hello
=> (hello)
hello-world
Here is one last simple example, to compute sqrt(a2 + b2). It also illustrates what happens if you write a function that calls another function that hasn't been defined yet.

=> (defun hypotenuse (a b) (sqrt (+ (sqr a) (sqr b))))
hypotenuse
=> (hypotenuse 3 4)
Error: undefined function: sqr
;; Unfortunately, we haven't defined sqr yet! But this is ok.
=> (defun sqr (x) (* x x))
sqr
=> (hypotenuse 3 4)
5.0
In other words, it is perfectly legal to define functions that call other, as-yet-undefined ones; it is only an error if you try to use  these functions before the auxilliary ones are defined.

cond and predicates

Most functions do not consist of a simple combination of other functions; there is usually some testing or conditional statement. In Lisp this is usually done with the cond function (for conditional); it has a somewhat peculiar syntax. Here is an example; this function returns one of the atoms too-hot, too-cold, or just-right depending on whether the temperature is above 90, below 45, or in between.

=> (defun weather (temperature)

(cond 


((>  temperature 90) 
' too-hot)


((<  temperature  45)
' too-cold)


( t




' just-right)))
weather
=> (weather 100)
too-hot
=> (weather 60)
just-right
The body of cond consists of a series of two-element lists, of the form (condition  result). Each condition is evaluated in turn, until one is reached that returns a non-nil value. The cond then evaluates the corresponding result, returns it, and stops. Cond thus works like an “if-then-else if” form. The conditions can be any Lisp function, but they are usually predicates: functions that return nil for false or, for true, the special atom t (the value of t is itself, just as the value of 5 is itself and the value of nil is itself). (Actually, all cond cares about is whether the predicate returns nil or non-nil. The value t is used only for concreteness; usually no other non-nil value is natural. But see member below.) In the example above, the reult clauses are just quoted atoms; evaluating them returns the value of the atom. The predicates > and < are for numeric comparison. The p at the end stands for predicate; some predicates use it and some don't. Here are a few more predicates:

(atom x)
t if x is an atom
(listp x)
t if x is a list, including nil (which is also an atom).
(numberp x)
t if x is a number)
(stringp x)
t if x is a string.
(symbolp x)
t if x is a symbolic atom
(equal x y)
returns t if x and y are structurally equal
(eq x y)
like equal but x, y must be atoms, or identical pointers.
nequal, neq
like equal and eq, except for not equal
(not expr)
returns t if expr returned nil; otherwise nil
(null x)
returns t if x=nil, otherwise nil.
(member item list)
if item appears in list, returns list from that point on

(recall cond counts as true any non-nil value)
(evenp num)
t if num is even
(oddp num)
t if num is odd
(zerop num)
t if num=0; handy for atomic cases in recursion
(minusp num)
t if num is negative
(plusp num)
t if num is positive

The third clause in weather, above, with result = just-right, has no predicate function. Instead, the single atom  t is used. Just as for any other condition, cond will evaluate t; however, since the value of t is always t, for “true”, this condition is always satisfied, and so the corresponding result will be returned. The t condition in a cond thus functions as an else clause (not another else-if, which is what a clause with a predicate is like). Since t is always satisfied, a cond clause with condition t will always appear last.

Note that cond clauses are essentially the only time in Lisp programs where you will type a double opening parenthesis ((. For ordinary functions — exprs — a function name (i.e. an atom) must follow any opening parenthesis, and most fexprs also follow this rule. Moral: if you see yourself typing ((, check to see if you are in a cond. If not, triple check again. Another common programming error in conds results in the message

Error: undefined function: t
This often means that you used t in a cond and did  put in the double parentheses, so Lisp thinks that t was used as a function when you only meant it as an atom. Cond clauses with t (or, more rarely, some other atom) as the condition are the only ones that don't  begin with ((; they require a single (.

Cond is the first control structure we have seen. It is worth noting that control structures in Lisp have similar syntax to other functions; this is not at all true in Pascal or C. Control structures in Lisp are, however, almost always special forms: they generally do not evaluate all their arguments, and sometimes (like cond) have certain nonstandard pecularities in their syntax (e.g. the extra parentheses surrounding each (condition result) pair). 

Here is one last cond example. Note that if every condition and result were evaluated this would crash if x=0.

(defun recip (x)

(cond 


((zerop x) 0)


(t   (/ 1.0 x))))

As one last note, cond itself returns a value like any other function. In both C and Pascal, if statements do not return values: they are only used for side effects. For instance, we can write this in Lisp:

(setq y (cond ((zerop x) 0) (t (/ 1.0 x))))

but the following equivalent in C is illegal:

y = if (x==0) 0; else 1.0/x;
/* ILLEGAL */


While on the subject of predicates and cond it is also appropriate to mention the Boolean functions:

(and expr1 expr2 ..... )
(or
expr1 expr2 ..... )

Like + and * these can take any number of parameters. Like cond, they are mainly interested in whether the exprs are nil or non-nil. And returns nil if any of its exprs are nil; otherwise it returns the value of the last one. These Boolean functions do short-circuit  evaluation; that is, if expr1 returns nil in and then we never get to expr2. This qualifies them as special forms, since they do not automatically evaluate all their parameters, although they have an entirely normal syntax otherwise. If we were willing to accept (recip 0) returning nil instead of 0, we could write it with and as follows:

(defun recip (x) (and (not (zerop x)) (/ 1.0 x)))

If x=0, then (not (zerop x)) returns nil, and we never get to the quotient.

Recursive functions

If this manual were describing C or Pascal it would be time to introduce some kind of loop control structure, such as while loops. Loops do exist in Lisp (although they tend to be either ugly or nonstandard), but it is usually more common to use recursion. Consider the definition of the factorial function, n!. The usual mathematical function is 0!=1, n!=n*(n-1)! if n>0. This is fundamentally a recursive definition, although it is easy enough to recast in a form appropriate for loops, e.g. n! = n*(n-1)*...*3*2*1. One advantage of programming with recursion is that one doesn't need loops, only a conditional statement. Here is factorial defined in Lisp.

(defun fact (n)

(cond 


((zerop n)  1)


( t   (* n (fact (1-  n))))))

(Note the use of (1-  n), which returns n-1). If n=0, this function simply returns 1; this is the atomic case. However, if n>0 we have the recursive case: fact calls itself, but with a simpler parameter.  Eventually, we reach the n=0 case and things start to return values. For example, (fact 4) calls (fact 3), which in turn calls (fact 2), which calls (fact 1), which calls (fact 0). This is finally the atomic case, and returns 1. Now, the pending call to (fact 1) multiplies this by 1, and returns 1*1=1. Then the pending call to (fact 2) returns 2*1=2. Then the pending call to (fact 3) multiplies this by 3 and returns 3*2=6. Finally, the original call to (fact 4) returns 4*6=24.

Many people have trouble writing recursive programs. One common problem is that if either the atomic case or the recursive case is a little bit off, then the error s accumulate as the recursion gets deeper and it can be hard to see what's happened. Here are a couple of hints. First of all, try to model your function after an existing one such as fact (a good example for recursion on numbers, with atomic case (zerop n)); another two main patterns of recursion in Lisp are described in the next two sections.  

Secondly, make use of tracing to debug recursive functions. Tracing tells you what parameters each recursive call was given, and what value it eventually returned. This usually makes very clear what went wrong; another trick is to start by giving the function parameters that represent the atomic case (fact 0) or are one step away from it (fact 1). To trace functions in Lisp, use the following:

=> (trace fact)


;; "?tr fact" in some lisp systems
(fact)
=> (fact 5)
1 <Enter> fact (5)

;; (5) = parameter list
|2 <Enter> fact (4)
| 3 <Enter> fact (3)
| |4 <Enter> fact (2)
| | 5 <Enter> fact (1)
| | |6 <Enter> fact (0)
| | |6 <EXIT>  fact  1
| | 5 <EXIT>  fact  1
| |4 <EXIT>  fact  2
| 3 <EXIT>  fact  6

;; 6 = value returned
|2 <EXIT>  fact  24
1 <EXIT>  fact  120
120
To untrace, use (untrace fact). Try tracing fact above and seeing what happens with (fact -1). Hint: be sure you know where the interrupt key is first!

cdr recursion

The most common pattern for recursion in Lisp is not numeric, like fact; rather, it involves lists. The atomic case is when the list is empty, (null lis). The recursive case calls the function on the shortened list (cdr lis). Here is an example.

(defun length (lis)

(cond
((null lis)  0)



( t (1+  (length (cdr lis))))))

In other words, the length of a list is 0 for nil, and 1 more than the length of the cdr, for non-nil. Note that the recursive case involves (length (cdr lis)); this is why this is called cdr recursion. Here is another example, with a second parameter x (actually listed here first). 

(defun member (x lis)

(cond
((null lis)  nil)



((equal x (car lis))  lis)



( t (member x (cdr lis)))))
=> (member 'c '(a b c d e))
(c d e)
=> (member 'f '(a b c d e))
nil
The recursion here is “on” the variable lis; the recursive clause (member x (cdr lis)) qualifies this as cdr recursion. Note that there are two atomic cases: the list is empty (this case will always be present for cdr recursion), and the item x has been found in the list lis. The third clause of the cond is then the recursive case. Note that the recursive case here, (member x (cdr lis)), is returned directly without further processing (while in length, on the other hand, we took (length (cdr x)) and added 1 to it). Recursion like this, when the recursive value becomes the main value without modification, is called tail recursion.

Here is a general pattern for cdr recursion; all you have to do is fill in the blanks. A cdr-recursive function may, like member, have more than one atomic case, and more than one variable. To start writing a cdr-recursive function, think about what the atomic case or cases is; that takes care of the first blank below. In tail recursion, the last blank is empty.

(defun foo (lis ...)

(cond


((null lis) _________ )
;; atomic case; there may be others


(( _____ )  _______ )
;; room for additional atomic cases


( t ( _______  (foo (cdr lis) ...)))))

Compare this to the following definition of (last lis). The last element of an empty list will be nil (technically it should be undefined, but this is good enough); the last element of a 1-element list is the same as its first element, namely its car.

(defun last (lis)

(cond 


((null lis) nil)


((null (cdr lis))  (car lis))
;; 1-elt list; this is alternative atomic case


( t  (last (cdr lis)))))

;; tail-recursive

The next two examples return new lists, creating them with the cons function one new cell at a time. First is append. To append one list on to another, the easiest way might be to go to the end of the first list, to the final cdr which is nil, and change this pointer to point to the beginning of the second list. This does work, but unfortunately something else might also have been pointing to the first list (see below on shared structure), and then that something else has also been appended to. So, the safe way to append one list on to the other is to copy it. The atomic case is copying nil on to the front of the second list; we just return the second list unchanged. Otherwise we copy the cdr of the first list, and then add one more element (namely the car).

(defun append (x y)

(cond 


((null x) y)


( t (cons (car x) (append (cdr x) y)))))

The next example returns a list of all the atoms in the original list, x. (Listatoms2 appears below, under car/cdr recursion.) The idea here is that (listatoms1 '(a (b) 2 (c d) e)) returns (a 2 e). We now check each car to see if it is an atom; if it is, we cons it on the recursive rest of the job. Otherwise, we ignore it. We have one atomic case, and two alternatives for the recursive case (note that only one gets executed). (Yes, this means that listatoms1 does not quite follow the general format above for cdr recursion).

(defun listatoms1  (x )

(cond 


((null x) nil)

;; no atoms


((atom (car x)) (cons (car x) (listatoms1  (cdr x))))
;; keep (car x)


( t (listatoms1  (cdr x)))))





;; lose (car x)

Our next example is reverse. Superficially it is easy: to reverse a non-nil list, just reverse the cdr and then attach the car to the end. This might be done as follows.

(defun reverse  (x )

(cond 


((null x) nil)

;; easy to reverse


(t (append (reverse (cdr x))  (list (car x))))))

To attach the car to the end, we first form it into a list (list (car x)) and then append. This does work. The only catch is that it is inefficient. Recall that append makes a copy  of the first list on the front of the second. The original is left alone, and in this case it is discarded (since nobody else uses it either). Thus, the results of all the recursive calls to append are copied and destroyed. Here is another version that avoids the append, at the cost of a second parameter. It reverses x and sticks the reversed version onto the front of the second parameter y; note what happens to y in the recursive case.

(defun reverse2 (x y)

(cond


((null x)  y)

;; x is easy to reverse


( t (reverse2 (cdr x) (cons (car x) y)))))

We take the first element off the front of x, stick it onto the front of y, and then reverse the rest of x and stick it on to the front of the new combination. To reverse a list, we reverse it “onto” nil:

=> (reverse2 '(a b c d) nil)
(d c b a)
To avoid having to write this nil, we can now define reverse as follows:

(defun reverse (x) (reverse2 x nil))

Thus, this reverse is not directly recursive; it simply sets up the parameters for the call to the recursive reverse2.

As a final example, here is nth. Note that like member it has an additional parameter n as well as a list lis; unlike member, however, n is also “reduced” in the recursive case. (nth n lis) returns the nth element of the list lis, starting at 0. Thus, (nth 0 lis) returns (car lis), and (nth 2 '(a b c d)) returns c. If lis doesn't have enough elements, nil is returned

(defun nth (n lis)

(cond 


((null lis) nil)


;; no more elements!


((zerop n) (car lis))


( t  (nth (1-  n) (cdr lis)))))  ;; n ((1-  n), lis ((cdr lis)

car-cdr recursion

We can think of cdr recursion as scanning down a list, processing each subsequent car immediately, and recursively processing the cdr. Sometimes, however, recursion is needed on the car as well as the cdr. Consider the problem of listing all the atoms in a list, at any level. Listatoms1, above, just listed atoms at the top level: (listatoms1 '(a (b) c)) returns (a). Here is the definition of listatoms1 again:

(defun listatoms1  (x )

(cond 


((null x) nil)

;; no atoms


((atom (car x)) (cons (car x) (listatoms1  (cdr x))))
;; keep (car x)


( t (listatoms1  (cdr x)))))





;; lose (car x)

In listatoms1, if (car x) was not an atom we discarded it. If (car x) is not an atom then it is  a list, and for listatoms2 we have to take care of all the atoms that appear within (car x). To do this we modify the last line as follows:

(defun listatoms2  (x )

(cond 


((null x) nil)

;; same


((atom (car x)) (cons (car x) (listatoms2  (cdr x))))
;; same


( t (append (listatoms2 (car x)) (listatoms2  (cdr x))))))  ;; revised

If x=nil, then (listatoms x) invokes the atomic case in the first line of the cond and returns nil. If x is not nil, however, one of the following two recursive cases is invoked. We always call listatoms recursively on the cdr. As for the car, if it is an atom then we use cons to attach it directly to the front. This is in a sense another atomic case, although we still do cdr recursion here. However, if the car is not an atom then it must be another list and we recursively call listatoms on the car as well as the cdr 

Another example is the function equal, which returns t if its two parameters are structurally identical. The function eq works to test equality for atoms (at least nonnumeric ones), but to test equality of two lists we must actually traverse both lists to see if they are the same.

Here is a simplified version of equal, which works for two lists of atoms. It uses cdr recursion only.

(defun equal1 (x y)

;; x, y must be lists of atoms

(cond


((or (null x) (null y)) (and (null x) (null y)))



;; if either is nil, then both must be nil.


(t (and (eq (car x) (car y)) (equal1 (cdr x) (cdr y)))))

If either of x or y is nil, the first cond clause returns t if both are nil, and nil otherwise. For the second cond clause, we know both x and y are non-nil lists and, by assumption, their cars are atoms. So, x and y are equal if their cars are eq and the cdrs are found to be equal by recursive applicaton of equal1.

Now let's try to make this into equal2, which tests for full equality (and works like the built-in equal). If the cars of x and y are atoms, we use the case above. However, if the cars are not atoms then we call equal2 on them, using car recursion.

(defun equal2 (x y)

;; x, y can be any lists

(cond


((or (null x) (null y)) (and (null x) (null y)))


((or (atom (car x)) (atom (car y)))



(and (eq (car x) (car y)) (equal2 (cdr x) (cdr y))))


(t (and (equal2 (car x) (car y)) (equal2 (cdr x) (cdr y)))))

Like in listatoms, we have two recursive cases: a cdr-only case when the cars are atoms, and a car/cdr case when the cars are themselves lists.

Actually, equal2 doesn't quite work like equal in that it only handles lists. If we add to it the ability to compare atoms as well as lists, then we can eliminate the distinction between (car x) an atom versus a list:

(defun equal2 (x y)

;; x, y can be lists or atoms

(cond


((or (null x) (null y)) (and (null x) (null y)))


((or (atom x) (atom y)) (eq x y)
;; use eq to compare


(t (and (equal2 (car x) (car y)) (equal2 (cdr x) (cdr y)))))

Now if (car x) or (car y) is an atom, we will call equal2 again, recursively, and the (or (atom x) (atom y)) clause will be invoked and eq will be used. The logic is a little cleaner, although more subtle. This is a common style for car/cdr recursion: the function takes either atoms or lists, the atom case is eventually called when processing lists, and the general pattern is

(defun carcdr (x)

;; car/cdr recursion pattern for lists or atoms
     (cond

((null x)  _____ )

;; atomic for cdr recurion

((atom x) _____ )

;; atomic for car recursion

(t (____ (car x) (car y)))))

There may, as for cdr recursion, be additional atomic or recursive cases. Here are two more examples: search and depth. Search is like member, except that it returns t if X is found at any level within Y (also if Y is an atom eq to X); nil otherwise. You should compare it to member, p. 7, col. 1.  Depth returns the depth of parentheses nesting in lis.

=> (search 'b '(a ((b) c)))
t
=> (search 'd (a ((b) c)))
nil
=> (search 'd 'd)
t
=> (depth '(a ((b) c)) )
3
=> (depth nil)
0
(defun search (X Y)

;; like member (X lis); recursion is on Y.
     (cond 

((null Y)  nil) 


; not found

((atom Y) (eq X Y))

;; maybe found  

(t (or (search X (car Y)) (search X (cdr Y))))))

(defun depth (X)
     (cond

((null X)  0)

((atom X)  0)
;technically 1st case is redundant

(t  (max (1+ (depth (car X))) (depth (cdr X))))))

Loops in Lisp

It is possible to do conventional iterative loops in Lisp, and thus avoid recursion. However, there are some subtle pitfalls; in particular, many iterative functions return the data in reverse order from what might be expected. 

Loops in Lisp are constructed from the prog function (for program). Prog is, like cond, a fexpr with its own syntax. Here is the general outline:

(prog 
(list-of-local-vars)


expr-or-atom


expr-or-atom


.  .  .  


expr-or-atom)

Atoms within a prog are labels for gotos. The exprs can be any ordinary lisp expressions or (go atom), to go to the corresponding atom used as a label, or (return expr) to exit the prog and return the expr as value. The expressions are evaluated in sequence, subject to go and return. Both go and return can be used only within progs; note in particular that return does not work like return in C in that it is not used as a general-purpose return-from-a-function statement. Return behaves more like break in C in that both can only be used within loops, but note that C loops are not expressions and do not return values. Lisp loops always return values, and the value returned is whatever was passed to the return function.

Note the local-variable list. Extra local variables are generally not needed when using recursion, but they are usually indispensible when writing loops. The local variables are initialized to nil. If you don't need any local variables then you must use nil as the list of them. Here is a prog version of fact:

(defun fact (n)

(prog (prod)


(setq prod 1)
;; initialize


loop


(setq prod (* prod n))


(setq n (1- n))


(cond ((zeop n) (return prod))



   (t (go loop)))))

Note the setq's; loops typically use these heavily. It doesn't do any good to take 
(1- n), or (cdr lis), or (cons (blah) result) in a loop unless you then save the result by assigning it to something. The whole point of loops is that variables should change as the loop repeats. In contrast, pure recursive programs don't need setq. 

The loop here is simply an atom used as a label. It can be any symbolic atom. Here is a similar version in Pascal, except that the test at the end is restructured a little since Pascal has no analogue of the return statement:

function fact (n: integer):integer;
var prod : integer;
begin

prod := 1;
        loop:

prod := prod*n;

n:=n-1;

if n≠0 then goto loop;

fact := prod;
end;

These compute the product n*(n–1)*...*3*2*1; the intermediate values of prod are n, n*(n–1), etc. The recursive fact actually computed the product in the order 1*2*3*...*n. However, for multiplication the order doesn't matter. For lists it sometimes does.

A simple prog loop thus might have the following format:

(prog (local vars)

(initialize vars)

loop

(body: new assignments to vars)

(cond ((done yet?) (return something))


   (t  (go loop))))

If in some cases you don't want the body of the loop done at all , put the test for return at the beginning of the loop. Here is reverse as a prog:

(defun reverse (x)
     (prog 
(y)


(setq y nil)


loop


(cond ((null x) (return y)))
;; short cond


(setq y (cons (car x) y))


(setq x (cdr x))


(go loop)))

We take one element at a time off of x and put it on y, until all the elements are now on y (in the reverse order) and none are on x. Then we stop, returning y. Recall that there was some problem writing an efficient reverse with recursion; the prog version is easier. 

The next example illustrates the more common case, when the prog version is trickier than the recursion. Here is listatoms1 (page 8) as a prog:

(defun plistatoms1 (lis)
  
;; p for prog, ver. 1 gets only top-level atoms 

(prog
(result)

;; collect the atoms in the local var result.



loop




(cond ((null lis) (return result))




   ((atom (car lis)) (setq result (cons (car lis) result))))



(setq lis (cdr lis))



(go loop)))

The atoms accumulate in the list result, and when we're done result is returned. As it stands, (plistatoms1 '(a (b) c (d) e)) would return (e c a); i.e. the reverse of what listatoms1 would return. To get plistatoms to return 
(a c e), one would need to reverse result before returning it:

(return (reverse (result)))
This is, in fact, commonly done.

Here is a prog version of listatoms2 (p. 9). Recall that listatoms2 used car/cdr recursion to track down all the atoms appearing at any level of the argument: (listatoms2 '(a (b) c (d) e)) returns (a b c d e). The prog loop here will replace cdr recursion, but note that we still need car recursion. The only difference here is the third clause of the cond, dealing with when (car lis) is not an atom (i.e. is a list): we call plistatoms2 recursively on (car lis) and append that list of atoms to result. 

((defun plistatoms2 (lis)

(prog
(result)

;; collect the atoms in the local var result.



loop




(cond ((null lis) (return result))




   ((atom (car lis)) (setq result (cons (car lis) result)))




   (t  (setq result (append (plistatoms2 (car lis)) result))))



(setq lis (cdr lis))



(go loop)))

Again, plistatoms2 returns the atoms in the wrong order; you can call (reverse (plistatoms2 x)) if you want the same result as (listatoms2 x). This time the problem cannot be fixed with (return (reverse result)), either, because that would also affect the value returned by the recursive calls. If this extra reverse were included, (plistatoms2 '((a b) (1 2) (c d))) would return (b a 2 1 d c); the problem is that the extra reverse would be called twice on the sublists (a b), (1 2), and (c d) and the net effect would be nothing.

mapcar and functions as parameters

In Lisp it is relatively common to use functions as parameters to other functions. Several built-in functions are designed with this in mind. Perhaps the most common is mapcar, which takes a function and a list and applies the function (i.e. the map) to each element of the list (i.e to (car list), as list gets shorter through recursion or looping). Here is an example:

(defun square (x) (* x x))

=> (mapcar 'square '(1 2 3 4 5))
(1 4 9 16 25)
=> (mapcar 'symbolp '(a 1 b c 2))
(t nil t t nil)
Note that the function name is quoted; we do not want to evaluate its name. In the first example, we had to define an auxilliary function square to use in the mapcar; one can also use anonymous functions. To say in Lisp “the function of x returning (* x x)” without giving this function a name, one writes (lambda (x)
(* x x)). Such a “function description” is not an evaluable expression and so must still be quoted. We have

=> (mapcar '(lambda (x) (* x x))  '(1 2 3 4 5))
(1 4 9 16 25)
Now let's write something that works like mapcar. Suppose we want to take a list, and return the sublist of all atoms (as in listatoms1), and we will also need the sublist of numbers. The basic idea here is taking the sublist of all things that satisfy some predicate function. So, one might write a single function filter that takes a predicate and a list, and returns the sublist of all objects satisfying the predicate. Here is how it might appear in Franz lisp (warning: other Lisp dialects work differently). The pred parameter represents a function, which we call within filter:

(defun filter (pred lis)

(cond
((null lis) nil)



((pred (car lis)) (cons (car lis) (filter pred (cdr lis))))



(t   (filter pred (cdr lis)))))

=> (filter 'atom '(a (b) c (d) e))
(a c e)
=> (filter 'symbolp '(a 1 2 b 3 c))
(a b c)
=> (filter 'numberp '(a 1 2 b 3 c))
(1 2 3)
macros

Lisp's parameters are always value parameters. Thus, it is surprising to see push and pop:

=> (setq stack  '(b c))
=> stack
(b c)
=> (push 'a stack)
(a b c)
=> stack
(a b c)
=> (pop stack)
a
=> stack
(b c)
Somehow, stack is being treated as if it were a reference parameter. It is not a true reference parameter however; instead, push and pop are macros. That is, they expand into something else before the actual evaluation. Thus, (push x y) expands into (setq y (cons x y)), and so (push 'a stack) expands into (setq stack (cons 'a stack)). Thus, Lisp behaves just as if the setq were typed directly. The pop is similar, except that it must return a value other than that assigned. However, it too expands just as if (setq stack (cdr stack)) had been typed directly. Note that (push 'a '(a b c)) will fail, since we cannot (setq '(a b c) anything); an identifier (a symbol) must be used as the second argument.

We will not look at how to write macros in this document.

Property Lists

So far we have seen that atoms can have values and can have function definitions. These two are independent; an atom can have both. Lisp also allows atoms to have other properties, which are set and received by keyword (the property name). To identify Fred as Sam's father on Sam's property list, one uses 


(putprop 'sam 'Fred 'father)

To retrieve Sam's father, one uses


(get 'sam 'father)

This would return the atom Fred. One could also give Sam other properties:


(putprop 'sam 'Mary 'mother)

(putprop 'sam 'math 'department)

(putprop 'sam '(jane matt) 'siblings)

(putprop 'sam  'male 'sex)

Finally, (plist 'sam) returns the entire property list, which would be something like

(father Fred mother Mary department math siblings (jane matt) sex male)

Summary of Lisp Functions

numeric functions
(+ n1 n2 ... nN)

returns the sum of the arguments. 





Synonyms are add, sum, and + for fixnums

(- n1 n2 ... nN)
returns n1 – n2 – ... – nN. Synonym is diff.

(- num)


returns –num.

(* n1 n2 ... nN)
returns the product of the args. 





Synonym is product, or * for fixnums.

(/ n1 n2 ... nN)
returns n1÷n2÷...÷nN; / is fixnum version.

 (1+ num)


returns num+1
(1- num)


returns num–1



general predicates
(atom x)

t if x is an atom
(fixp x)

t if x is a fixnum
(listp x)

t if x is a list, including nil (which is also an atom).
(numberp x)
t if x is a number)
(stringp x)
t if x is a string.
(symbolp x)
t if x is a symbolic atom
(equal x y)
returns t if x and y are structurally equal
(eq x y)

like equal but x, y must be symbols, or equal pointers.
nequal, neq
like equal and eq, except for not equal
(not expr)
returns t if expr returned nil; otherwise nil
(null x)

returns t if x=nil, otherwise nil.
(member item list)
if item appears in list, returns list from that point on
(memq atom list)
like member, but uses eq for comparison. Faster.
(boundp atom)
nil if atom has no value, otherwise (nil . value)

(and expr1 ... exprN)
If all exprs are non-nil, returns value of exprN. 
If some expr is nil, nil is returned and remaining exprs are not evaluated.

(or expr1 ... exprN)

If all exprs are nil, returns nil. If some expr is non-nil, value of that expr is returned and remaining exprs are not evaluated.


numeric predicates

(evenp num)
t if num is even
(oddp num)
t if num is odd
(zerop num)
t if num=0; handy for atomic cases in recursion
(minusp num)
t if num is negative
(plusp num)
t if num is positive

(lessp x y)
t if x<y; also (< x y)
(greaterp x y)
t if x>y; also (> x y)
(<= x y)
t if x<=y
(>= x y)
t if x>=y
(= x y)
Like (equal x y), but for numbers only.


list access functions
(car x)

first element of list x
(cdr x)

remainder of list x

(cadr x)

(car (cdr x)); also cddr, cdar, caddr, cdadar, etc.

(last x)

last element of list x

(length x)
the length of list x

(nth num lis)

returns numth element of lis, starting at 0. 
(nthelem num lis)
returns numth element of lis, starting at 1. 


list construction functions

(cons x lis)
returns the new list formed by putting x onto the front of lis.

(append l1 l2 ... lN)
appends the lists. All are copies except for lN.

(list x1 x2 ... xN)
returns the list (x1 x2 ... xN)


programming functions

(quote x)
returns x unevaluated. Usually abbreviated to 'x.

(setq x y)
x:=y

(cond (test1  –exprs–)

    (test2  –exprs–)

   ....

    (testN  –exprs–))
The tests are evaluated in sequence until one returns a non-nil value. The corresponding exprs are then evaluated from left to right (usually there is only a single expr), and the value of the last one is returned as the value of the cond. If all tests are nil, nil is returned.

(defun name (–vars–) body)
Defines an expr with the given name, vars, and body. With variants and keywords this is also used to define fexprs, lexprs, and macros.

(prog (–localvars–)  clause1 .... clauseN)
Defines a potential loop. The clauses are evaluated in order, subject to (go label), which goes to the atom label, and (return expr), which breaks out of the prog and returns the value of expr. If you fall off the end, nil is returned.
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