
36 – Exotica

36 – Exotica

In this, the final chapter of our journey, we will look at some odds and ends. While we
have certainly covered a lot of ground in the previous chapters, there are many bash fea-
tures that we have not covered. Most are fairly obscure and useful mainly to those inte-
grating bash into a Linux distribution. However, there are a few that, while not in com-
mon use, are helpful for certain programming problems. We will cover them here.

Group Commands and Subshells

bash allows commands to be grouped together. This can be done in one of two ways, ei-
ther with a group command or with a subshell.

Here are examples of the syntax of a group command:

{ command1; command2; [command3; ...] }

Here is the syntax of a subshell:

(command1; command2; [command3;...])

The two forms differ in that a group command surrounds its commands with braces and a
subshell uses parentheses. It is important to note that, because of the way bash imple-
ments group commands, the braces must be separated from the commands by a space and
the last command must be terminated with either a semicolon or a newline prior to the
closing brace.

So, what are group commands and subshells good for? While they have an important dif-
ference (which we will get to in a moment), they are both used to manage redirection.
Let’s consider a script segment that performs redirections on multiple commands.

ls -l > output.txt
echo "Listing of foo.txt" >> output.txt
cat foo.txt >> output.txt

This is pretty straightforward. Three commands have their output redirected to a file
named output.txt. Using a group command, we could code this as follows:

505

36 – Exotica

{ ls -l; echo "Listing of foo.txt"; cat foo.txt; } > output.txt

Using a subshell is similar.

(ls -l; echo "Listing of foo.txt"; cat foo.txt) > output.txt

Using this technique we have saved ourselves some typing, but where a group command
or subshell really shines is with pipelines. When constructing a pipeline of commands, it
is often useful to combine the results of several commands into a single stream. Group
commands and subshells make this easy.

{ ls -l; echo "Listing of foo.txt"; cat foo.txt; } | lpr

Here we have combined the output of our three commands and piped them into the input
of lpr to produce a printed report.

In the script that follows, we will use groups commands and look at several programming
techniques that can be employed in conjunction with associative arrays. This script,
called array-2, when given the name of a directory, prints a listing of the files in the
directory along with the names of the file's owner and group owner. At the end of the
listing, the script prints a tally of the number of files belonging to each owner and group.
Here we see the results (condensed for brevity) when the script is given the directory /
usr/bin:

[me@linuxbox ~]$ array-2 /usr/bin
/usr/bin/2to3-2.6 root root
/usr/bin/2to3 root root
/usr/bin/a2p root root
/usr/bin/abrowser root root
/usr/bin/aconnect root root
/usr/bin/acpi_fakekey root root
/usr/bin/acpi_listen root root
/usr/bin/add-apt-repository root root
.
.
.
/usr/bin/zipgrep root root
/usr/bin/zipinfo root root
/usr/bin/zipnote root root

506

Group Commands and Subshells

/usr/bin/zip root root
/usr/bin/zipsplit root root
/usr/bin/zjsdecode root root
/usr/bin/zsoelim root root

File owners:
daemon : 1 file(s)
root : 1394 file(s)

File group owners:
crontab : 1 file(s)
daemon : 1 file(s)
lpadmin : 1 file(s)
mail : 4 file(s)
mlocate : 1 file(s)
root : 1380 file(s)
shadow : 2 file(s)
ssh : 1 file(s)
tty : 2 file(s)
utmp : 2 file(s)

Here is a listing (with line numbers) of the script:

 1 #!/bin/bash
 2
 3 # array-2: Use arrays to tally file owners
 4
 5 declare -A files file_group file_owner groups owners
 6
 7 if [[! -d "$1"]]; then
 8 echo "Usage: array-2 dir" >&2
 9 exit 1
 10 fi
 11
 12 for i in "$1"/*; do
 13 owner="$(stat -c %U "$i")"
 14 group="$(stat -c %G "$i")"
 15 files["$i"]="$i"
 16 file_owner["$i"]="$owner"
 17 file_group["$i"]="$group"
 18 ((++owners[$owner]))
 19 ((++groups[$group]))

507

36 – Exotica

 20 done
 21
 22 # List the collected files
 23 { for i in "${files[@]}"; do
 24 printf "%-40s %-10s %-10s\n" \
 25 "$i" "${file_owner["$i"]}" "${file_group["$i"]}"
 26 done } | sort
 27 echo
 28
 29 # List owners
 30 echo "File owners:"
 31 { for i in "${!owners[@]}"; do
 32 printf "%-10s: %5d file(s)\n" "$i" "${owners["$i"]}"
 33 done } | sort
 34 echo
 35
 36 # List groups
 37 echo "File group owners:"
 38 { for i in "${!groups[@]}"; do
 39 printf "%-10s: %5d file(s)\n" "$i" "${groups["$i"]}"
 40 done } | sort

Let's take a look at the mechanics of this script:

Line 5: Associative arrays must be created with the declare command using the -A
option. In this script we create five arrays as follows:

• files contains the names of the files in the directory, indexed by filename

• file_group contains the group owner of each file, indexed by filename

• file_owner contains the owner of each file, indexed by file name

• groups contains the number of files belonging to the indexed group

• owners contains the number of files belonging to the indexed owner

Lines 7-10: These lines check to see that a valid directory name was passed as a posi-
tional parameter. If not, a usage message is displayed and the script exits with an exit sta-
tus of 1.

Lines 12-20: These lines loop through the files in the directory. Using the stat com-
mand, lines 13 and 14 extract the names of the file owner and group owner and assign the
values to their respective arrays (lines 16 and 17) using the name of the file as the array
index. Likewise, the file name itself is assigned to the files array (line 15).

Lines 18-19: The total number of files belonging to the file owner and group owner are

508

Group Commands and Subshells

incremented by one.

Lines 22-27: The list of files is output. This is done using the "${array[@]}" pa-
rameter expansion which expands into the entire list of array elements with each element
treated as a separate word. This allows for the possibility that a filename may contain
embedded spaces. Also note that the entire loop is enclosed in braces thus forming a
group command. This permits the entire output of the loop to be piped into the sort
command. This is necessary because the expansion of the array elements is not sorted.

Lines 29-40: These two loops are similar to the file list loop except that they use the "$
{!array[@]}" expansion which expands into the list of array indexes rather than the
list of array elements.

Process Substitution

While they look similar and can both be used to combine streams for redirection, there is
an important difference between group commands and subshells. Whereas a group com-
mand executes all of its commands in the current shell, a subshell (as the name suggests)
executes its commands in a child copy of the current shell. This means the environment is
copied and given to a new instance of the shell. When the subshell exits, the copy of the
environment is lost, so any changes made to the subshell’s environment (including vari-
able assignment) are lost as well. Therefore, in most cases, unless a script requires a sub-
shell, group commands are preferable to subshells. Group commands are both faster and
require less memory.

We saw an example of the subshell environment problem in Chapter 28, “Reading Key-
board Input,” when we discovered that a read command in a pipeline does not work as
we might intuitively expect. To recap, if we construct a pipeline like this:

echo "foo" | read
echo $REPLY

the content of the REPLY variable is always empty because the read command is exe-
cuted in a subshell, and its copy of REPLY is destroyed when the subshell terminates.

Because commands in pipelines are always executed in subshells, any command that as-
signs variables will encounter this issue. Fortunately, the shell provides an exotic form of
expansion called process substitution that can be used to work around this problem.

Process substitution is expressed in two ways.

For processes that produce standard output, it looks like this:

<(list)

509

36 – Exotica

or, for processes that intake standard input, it looks like this:

>(list)

where list is a list of commands.

To solve our problem with read, we can employ process substitution like this:

read < <(echo "foo")
echo $REPLY

Process substitution allows us to treat the output of a subshell as an ordinary file for pur-
poses of redirection. In fact, since it is a form of expansion, we can examine its real
value.

[me@linuxbox ~]$ echo <(echo "foo")
/dev/fd/63

By using echo to view the result of the expansion, we see that the output of the subshell
is being provided by a file named /dev/fd/63.

Process substitution is often used with loops containing read. Here is an example of a
read loop that processes the contents of a directory listing created by a subshell:

#!/bin/bash

pro-sub: demo of process substitution

while read attr links owner group size date time filename; do
cat <<- EOF

Filename: $filename
Size: $size
Owner: $owner
Group: $group
Modified: $date $time
Links: $links
Attributes: $attr

EOF
done < <(ls -l | tail -n +2)

The loop executes read for each line of a directory listing. The listing itself is produced

510

Group Commands and Subshells

on the final line of the script. This line redirects the output of the process substitution into
the standard input of the loop. The tail command is included in the process substitution
pipeline to eliminate the first line of the listing, which is not needed.

When executed, the script produces output like this:

[me@linuxbox ~]$ pro-sub | head -n 20
Filename: addresses.ldif
Size: 14540
Owner: me
Group: me
Modified: 2009-04-02 11:12
Links: 1
Attributes: -rw-r--r--

Filename: bin
Size: 4096
Owner: me
Group: me
Modified: 2009-07-10 07:31
Links: 2
Attributes: drwxr-xr-x

Filename: bookmarks.html
Size: 394213
Owner: me
Group: me

Traps

In Chapter 10, “Processes,” we saw how programs can respond to signals. We can add
this capability to our scripts, too. While the scripts we have written so far have not
needed this capability (because they have very short execution times, and do not create
temporary files), larger and more complicated scripts may benefit from having a signal
handling routine.

When we design a large, complicated script, it is important to consider what happens if
the user logs off or shuts down the computer while the script is running. When such an
event occurs, a signal will be sent to all affected processes. In turn, the programs repre-
senting those processes can perform actions to ensure a proper and orderly termination of
the program. Let’s say, for example, that we wrote a script that created a temporary file
during its execution. In the course of good design, we would have the script delete the file
when the script finishes its work. It would also be smart to have the script delete the file

511

36 – Exotica

if a signal is received indicating that the program was going to be terminated prematurely.

bash provides a mechanism for this purpose known as a trap. Traps are implemented
with the appropriately named builtin command, trap. trap uses the following syntax:

trap argument signal [signal...]

where argument is a string that will be read and treated as a command and signal is the
specification of a signal that will trigger the execution of the interpreted command.

Here is a simple example:

#!/bin/bash

trap-demo: simple signal handling demo

trap "echo 'I am ignoring you.'" SIGINT SIGTERM

for i in {1..5}; do
echo "Iteration $i of 5"
sleep 5

done

This script defines a trap that will execute an echo command each time either the SIG-
INT or SIGTERM signal is received while the script is running. Execution of the pro-
gram looks like this when the user attempts to stop the script by pressing Ctrl-c:

[me@linuxbox ~]$ trap-demo
Iteration 1 of 5
Iteration 2 of 5
^CI am ignoring you.
Iteration 3 of 5
^CI am ignoring you.
Iteration 4 of 5
Iteration 5 of 5

As we can see, each time the user attempts to interrupt the program, the message is
printed instead.

Constructing a string to form a useful sequence of commands can be awkward, so it is
common practice to specify a shell function as the command. In this example, a separate
shell function is specified for each signal to be handled:

512

Traps

#!/bin/bash

trap-demo2: simple signal handling demo

exit_on_signal_SIGINT () {
echo "Script interrupted." 2>&1
exit 0

}

exit_on_signal_SIGTERM () {
echo "Script terminated." 2>&1
exit 0

}

trap exit_on_signal_SIGINT SIGINT
trap exit_on_signal_SIGTERM SIGTERM

for i in {1..5}; do
echo "Iteration $i of 5"
sleep 5

done

This script features two trap commands, one for each signal. Each trap, in turn, speci-
fies a shell function to be executed when the particular signal is received. Note the inclu-
sion of an exit command in each of the signal-handling functions. Without an exit,
the script would continue after completing the function.

When the user presses Ctrl-c during the execution of this script, the results look like
this:

[me@linuxbox ~]$ trap-demo2
Iteration 1 of 5
Iteration 2 of 5
^CScript interrupted.

513

36 – Exotica

Temporary Files

One reason signal handlers are included in scripts is to remove temporary files
that the script may create to hold intermediate results during execution. There is
something of an art to naming temporary files. Traditionally, programs on Unix-
like systems create their temporary files in the /tmp directory, a shared directory
intended for such files. However, since the directory is shared, this poses certain
security concerns, particularly for programs running with superuser privileges.
Aside from the obvious step of setting proper permissions for files exposed to all
users of the system, it is important to give temporary files nonpredictable file-
names. This avoids an exploit known as a temp race attack. One way to create a
nonpredictable (but still descriptive) name is to do something like this:

tempfile=/tmp/$(basename $0).$$.$RANDOM

This will create a filename consisting of the program’s name, followed by its
process ID (PID), followed by a random integer. Note, however, that the $RAN-
DOM shell variable returns only a value in the range of 1-32767, which is not a
large range in computer terms, so a single instance of the variable is not sufficient
to overcome a determined attacker.

A better way is to use the mktemp program (not to be confused with the mktemp
standard library function) to both name and create the temporary file. The mk-
temp program accepts a template as an argument that is used to build the file-
name. The template should include a series of “X” characters, which are replaced
by a corresponding number of random letters and numbers. The longer the series
of “X” characters, the longer the series of random characters. Here is an example:

tempfile=$(mktemp /tmp/foobar.$$.XXXXXXXXXX)

This creates a temporary file and assigns its name to the variable tempfile.
The “X” characters in the template are replaced with random letters and numbers
so that the final filename (which, in this example, also includes the expanded
value of the special parameter $$ to obtain the PID) might be something like this:

/tmp/foobar.6593.UOZuvM6654

For scripts that are executed by regular users, it may be wise to avoid the use of
the /tmp directory and create a directory for temporary files within the user’s
home directory, with a line of code such as this:

[[-d $HOME/tmp]] || mkdir $HOME/tmp

514

Asynchronous Execution

Asynchronous Execution

It is sometimes desirable to perform more than one task at the same time. We have seen
how all modern operating systems are at least multitasking if not multiuser as well.
Scripts can be constructed to behave in a multitasking fashion.

Usually this involves launching a script that, in turn, launches one or more child scripts to
perform an additional task while the parent script continues to run. However, when a se-
ries of scripts runs this way, there can be problems keeping the parent and child coordi-
nated. That is, what if the parent or child is dependent on the other and one script must
wait for the other to finish its task before finishing its own?

bash has a builtin command to help manage asynchronous execution such as this. The
wait command causes a parent script to pause until a specified process (i.e., the child
script) finishes.

wait

We will demonstrate the wait command first. To do this, we will need two scripts. First
a parent script.

#!/bin/bash

async-parent: Asynchronous execution demo (parent)

echo "Parent: starting..."

echo "Parent: launching child script..."
async-child &
pid=$!
echo "Parent: child (PID= $pid) launched."

echo "Parent: continuing..."
sleep 2

echo "Parent: pausing to wait for child to finish..."
wait "$pid"

echo "Parent: child is finished. Continuing..."
echo "Parent: parent is done. Exiting."

The second is a child script.

515

36 – Exotica

#!/bin/bash

async-child: Asynchronous execution demo (child)

echo "Child: child is running..."
sleep 5
echo "Child: child is done. Exiting."

In this example, we see that the child script is simple. The real action is being performed
by the parent. In the parent script, the child script is launched and put into the back-
ground. The process ID of the child script is recorded by assigning the pid variable with
the value of the $! shell parameter, which will always contain the process ID of the last
job put into the background.

The parent script continues and then executes a wait command with the PID of the child
process. This causes the parent script to pause until the child script exits, at which point
the parent script concludes.

When executed, the parent and child scripts produce the following output:

[me@linuxbox ~]$ async-parent
Parent: starting...
Parent: launching child script...
Parent: child (PID= 6741) launched.
Parent: continuing...
Child: child is running...
Parent: pausing to wait for child to finish...
Child: child is done. Exiting.
Parent: child is finished. Continuing...
Parent: parent is done. Exiting.

Named Pipes

In most Unix-like systems, it is possible to create a special type of file called a named
pipe. Named pipes are used to create a connection between two processes and can be
used just like other types of files. They are not that popular, but they’re good to know
about.

There is a common programming architecture called client-server, which can make use of
a communication method such as named pipes, as well as other kinds of interprocess
communication such as network connections.

The most widely used type of client-server system is, of course, a web browser communi-

516

Named Pipes

cating with a web server. The web browser acts as the client, making requests to the
server, and the server responds to the browser with web pages.

Named pipes behave like files but actually form first-in first-out (FIFO) buffers. As with
ordinary (unnamed) pipes, data goes in one end and emerges out the other. With named
pipes, it is possible to set up something like this:

process1 > named_pipe

and this:

process2 < named_pipe

and it will behave like this:

process1 | process2

Setting Up a Named Pipe

First, we must create a named pipe. This is done using the mkfifo command.

[me@linuxbox ~]$ mkfifo pipe1
[me@linuxbox ~]$ ls -l pipe1
prw-r--r-- 1 me me 0 2009-07-17 06:41 pipe1

Here we use mkfifo to create a named pipe called pipe1. Using ls, we examine the
file and see that the first letter in the attributes field is “p”, indicating that it is a named
pipe.

Using Named Pipes

To demonstrate how the named pipe works, we will need two terminal windows (or alter-
nately, two virtual consoles). In the first terminal, we enter a simple command and redi-
rect its output to the named pipe.

[me@linuxbox ~]$ ls -l > pipe1

After we press the Enter key, the command will appear to hang. This is because there is
nothing receiving data from the other end of the pipe yet. When this occurs, it is said that
the pipe is blocked. This condition will clear once we attach a process to the other end
and it begins to read input from the pipe. Using the second terminal window, we enter
this command:

517

36 – Exotica

[me@linuxbox ~]$ cat < pipe1

The directory listing produced from the first terminal window appears in the second ter-
minal as the output from the cat command. The ls command in the first terminal suc-
cessfully completes once it is no longer blocked.

Summing Up

Well, we have completed our journey. The only thing left to do now is practice, practice,
practice. Even though we covered a lot of ground in our trek, we barely scratched the sur-
face as far as the command line goes. There are still thousands of command line pro-
grams left to be discovered and enjoyed. Start digging around in /usr/bin and you’ll
see!

Further Reading

● The “Compound Commands” section of the bash man page contains a full de-
scription of group command and subshell notations.

● The EXPANSION section of the bash man page contains a subsection covering
process substitution.

● The Advanced Bash-Scripting Guide also has a discussion of process substitution:
http://tldp.org/LDP/abs/html/process-sub.html

● Linux Journal has two good articles on named pipes. The first, from September
1997:
http://www.linuxjournal.com/article/2156

● and the second, from March 2009:
http://www.linuxjournal.com/content/using-named-pipes-fifos-bash

518

http://www.linuxjournal.com/content/using-named-pipes-fifos-bash
http://www.linuxjournal.com/article/2156
http://tldp.org/LDP/abs/html/process-sub.html

