
34 – Strings and Numbers

34 – Strings and Numbers

Computer programs are all about working with data. In past chapters, we have focused on
processing data at the file level. However, many programming problems need to be
solved using smaller units of data such as strings and numbers.

In this chapter, we will look at several shell features that are used to manipulate strings
and numbers. The shell provides a variety of parameter expansions that perform string
operations. In addition to arithmetic expansion (which we touched upon in Chapter 7,
“Seeing the World as the Shell Sees It”), there is a well-known command line program
called bc, which performs higher-level math.

Parameter Expansion

Though parameter expansion came up in Chapter 7, we did not cover it in detail because
most parameter expansions are used in scripts rather than on the command line. We have
already worked with some forms of parameter expansion, for example, shell variables.
The shell provides many more.

Note: It's always good practice to enclose parameter expansions in double quotes
to prevent unwanted word splitting, unless there is a specific reason not to. This
is especially true when dealing with filenames since they can often include em-
bedded spaces and other assorted nastiness.

Basic Parameters

The simplest form of parameter expansion is reflected in the ordinary use of variables.
Here’s an example:

$a

When expanded, this becomes whatever the variable a contains. Simple parameters may
also be surrounded by braces.

${a}

This has no effect on the expansion, but is required if the variable is adjacent to other

473

34 – Strings and Numbers

text, which may confuse the shell. In this example, we attempt to create a filename by ap-
pending the string _file to the contents of the variable a.

[me@linuxbox ~]$ a="foo"
[me@linuxbox ~]$ echo "$a_file"

If we perform this sequence of commands, the result will be nothing because the shell
will try to expand a variable named a_file rather than a. This problem can be solved
by adding braces around the “real” variable name.

[me@linuxbox ~]$ echo "${a}_file"
foo_file

We have also seen that positional parameters greater than nine can be accessed by sur-
rounding the number in braces. For example, to access the eleventh positional parameter,
we can do this:

${11}

Expansions to Manage Empty Variables

Several parameter expansions are intended to deal with nonexistent and empty variables.
These expansions are handy for handling missing positional parameters and assigning de-
fault values to parameters.

${parameter:-word}

If parameter is unset (i.e., does not exist) or is empty, this expansion results in the value
of word. If parameter is not empty, the expansion results in the value of parameter.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:-"substitute value if unset"}
substitute value if unset
[me@linuxbox ~]$ echo $foo

[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:-"substitute value if unset"}
bar
[me@linuxbox ~]$ echo $foo

474

Parameter Expansion

bar

${parameter:=word}

If parameter is unset or empty, this expansion results in the value of word. In addition,
the value of word is assigned to parameter. If parameter is not empty, the expansion re-
sults in the value of parameter.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:="default value if unset"}
default value if unset
[me@linuxbox ~]$ echo $foo
default value if unset
[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:="default value if unset"}
bar
[me@linuxbox ~]$ echo $foo
bar

Note: Positional and other special parameters cannot be assigned this way.

${parameter:?word}

If parameter is unset or empty, this expansion causes the script to exit with an error, and
the contents of word are sent to standard error. If parameter is not empty, the expansion
results in the value of parameter.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:?"parameter is empty"}
bash: foo: parameter is empty
[me@linuxbox ~]$ echo $?
1
[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:?"parameter is empty"}
bar
[me@linuxbox ~]$ echo $?
0

475

34 – Strings and Numbers

${parameter:+word}

If parameter is unset or empty, the expansion results in nothing. If parameter is not
empty, the value of word is substituted for parameter; however, the value of parameter is
not changed.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:+"substitute value if set"}

[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:+"substitute value if set"}
substitute value if set

Expansions That Return Variable Names

The shell has the ability to return the names of variables. This is used in some rather ex-
otic situations.

${!prefix*}
${!prefix@}

This expansion returns the names of existing variables with names beginning with prefix.
According to the bash documentation, both forms of the expansion perform identically.
Here, we list all the variables in the environment with names that begin with BASH:

[me@linuxbox ~]$ echo ${!BASH*}
BASH BASH_ARGC BASH_ARGV BASH_COMMAND BASH_COMPLETION
BASH_COMPLETION_DIR BASH_LINENO BASH_SOURCE BASH_SUBSHELL
BASH_VERSINFO BASH_VERSION

String Operations

There is a large set of expansions that can be used to operate on strings. Many of these
expansions are particularly well suited for operations on pathnames.

${#parameter}

expands into the length of the string contained by parameter. Normally, parameter is a
string; however, if parameter is either @ or *, then the expansion results in the number of
positional parameters.

476

Parameter Expansion

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo "'$foo' is ${#foo} characters long."
'This string is long.' is 20 characters long.

${parameter:offset}
${parameter:offset:length}

These expansions are used to extract a portion of the string contained in parameter. The
extraction begins at offset characters from the beginning of the string and continues until
the end of the string, unless length is specified.

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo ${foo:5}
string is long.
[me@linuxbox ~]$ echo ${foo:5:6}
string

If the value of offset is negative, it is taken to mean it starts from the end of the string
rather than the beginning. Note that negative values must be preceded by a space to pre-
vent confusion with the ${parameter:-word} expansion. length, if present, must not
be less than zero.

If parameter is @, the result of the expansion is length positional parameters, starting at
offset.

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo ${foo: -5}
long.
[me@linuxbox ~]$ echo ${foo: -5:2}
lo

${parameter#pattern}
${parameter##pattern}

These expansions remove a leading portion of the string contained in parameter defined
by pattern. pattern is a wildcard pattern like those used in pathname expansion. The dif-
ference in the two forms is that the # form removes the shortest match, while the ## form
removes the longest match.

[me@linuxbox ~]$ foo=file.txt.zip

477

34 – Strings and Numbers

[me@linuxbox ~]$ echo ${foo#*.}
txt.zip
[me@linuxbox ~]$ echo ${foo##*.}
zip

${parameter%pattern}
${parameter%%pattern}

These expansions are the same as the previous # and ## expansions, except they remove
text from the end of the string contained in parameter rather than from the beginning.

[me@linuxbox ~]$ foo=file.txt.zip
[me@linuxbox ~]$ echo ${foo%.*}
file.txt
[me@linuxbox ~]$ echo ${foo%%.*}
file

${parameter/pattern/string}
${parameter//pattern/string}
${parameter/#pattern/string}
${parameter/%pattern/string}

This expansion performs a search-and-replace operation upon the contents of parameter.
If text is found matching wildcard pattern, it is replaced with the contents of string. In the
normal form, only the first occurrence of pattern is replaced. In the // form, all occur-
rences are replaced. The /# form requires that the match occur at the beginning of the
string, and the /% form requires the match to occur at the end of the string. In every form,
/string may be omitted, causing the text matched by pattern to be deleted.

[me@linuxbox ~]$ foo=JPG.JPG
[me@linuxbox ~]$ echo ${foo/JPG/jpg}
jpg.JPG
[me@linuxbox ~]$ echo ${foo//JPG/jpg}
jpg.jpg
[me@linuxbox ~]$ echo ${foo/#JPG/jpg}
jpg.JPG
[me@linuxbox ~]$ echo ${foo/%JPG/jpg}
JPG.jpg

Parameter expansion is a good thing to know. The string manipulation expansions can be
used as substitutes for other common commands such as sed and cut. Expansions can

478

Parameter Expansion

improve the efficiency of scripts by eliminating the use of external programs. As an ex-
ample, we will modify the longest-word program discussed in the previous chapter
to use the parameter expansion ${#j} in place of the command substitution $(echo -
n $j | wc -c) and its resulting subshell, like so:

#!/bin/bash

longest-word3: find longest string in a file

for i; do
if [[-r "$i"]]; then

max_word=
max_len=0
for j in $(strings $i); do

len="${#j}"
if ((len > max_len)); then

max_len="$len"
max_word="$j"

fi
done
echo "$i: '$max_word' ($max_len characters)"

fi
done

Next, we will compare the efficiency of the two versions by using the time command.

[me@linuxbox ~]$ time longest-word2 dirlist-usr-bin.txt
dirlist-usr-bin.txt: 'scrollkeeper-get-extended-content-list' (38
characters)

real 0m3.618s
user 0m1.544s
sys 0m1.768s
[me@linuxbox ~]$ time longest-word3 dirlist-usr-bin.txt
dirlist-usr-bin.txt: 'scrollkeeper-get-extended-content-list' (38
characters)

real 0m0.060s
user 0m0.056s
sys 0m0.008s

479

34 – Strings and Numbers

The original version of the script takes 3.618 seconds to scan the text file, while the new
version, using parameter expansion, takes only 0.06 seconds — a significant improve-
ment.

Case Conversion

bash has four parameter expansions and two declare command options to support
the uppercase/lowercase conversion of strings.

So what is case conversion good for? Aside from the obvious aesthetic value, it has an
important role in programming. Let's consider the case of a database lookup. Imagine
that a user has entered a string into a data input field that we want to look up in a data-
base. It's possible the user will enter the value in all uppercase letters or lowercase letters
or a combination of both. We certainly don't want to populate our database with every
possible permutation of uppercase and lowercase spellings. What to do?

A common approach to this problem is to normalize the user's input. That is, convert it
into a standardized form before we attempt the database lookup. We can do this by con-
verting all the characters in the user's input to either lower or uppercase and ensure that
the database entries are normalized the same way.

The declare command can be used to normalize strings to either uppercase or lower-
case. Using declare, we can force a variable to always contain the desired format no
matter what is assigned to it.

#!/bin/bash

ul-declare: demonstrate case conversion via declare

declare -u upper
declare -l lower

if [[$1]]; then
 upper="$1"
 lower="$1"
 echo "$upper"
 echo "$lower"
fi

In the preceding script, we use declare to create two variables, upper and lower.
We assign the value of the first command line argument (positional parameter 1) to each
of the variables and then display them on the screen.

480

Parameter Expansion

[me@linuxbox ~]$ ul-declare aBc
ABC
abc

As we can see, the command line argument (aBc) has been normalized.

In addition to declare, there are four parameter expansions that perform upper/lower-
case conversion as described in Table 34-1.

Table 34-1: Case Conversion Parameter Expansions

Format Result

${parameter,,pattern} Expand the value of parameter into all lowercase.
pattern is an optional shell pattern (for
example, [A-F]) that will limit which characters
are converted. See the bash man page for a full
description of patterns.

${parameter,pattern} Expand the value of parameter, changing only the
first character to lowercase.

${parameter^^pattern} Expand the value of parameter into all uppercase
letters.

${parameter^pattern} Expand the value of parameter, changing only the
first character to uppercase (capitalization).

Here is a script that demonstrates these expansions:

#!/bin/bash

ul-param: demonstrate case conversion via parameter expansion

if [["$1"]]; then
 echo "${1,,}"
 echo "${1,}"
 echo "${1^^}"
 echo "${1^}"
fi

Here is the script in action:

481

34 – Strings and Numbers

[me@linuxbox ~]$ ul-param aBc
abc
aBc
ABC
ABc

Again, we process the first command line argument and output the four variations sup-
ported by the parameter expansions. While this script uses the first positional parameter,
parameter may be any string, variable, or string expression.

Arithmetic Evaluation and Expansion

We looked at arithmetic expansion in Chapter 7. It is used to perform various arithmetic
operations on integers. Its basic form is as follows:

$((expression))

where expression is a valid arithmetic expression.

This is related to the compound command (()) used for arithmetic evaluation (truth
tests) we encountered in Chapter 27.

In previous chapters, we saw some of the common types of expressions and operators.
Here, we will look at a more complete list.

Number Bases

In Chapter 9, we got a look at octal (base 8) and hexadecimal (base 16) numbers. In arith-
metic expressions, the shell supports integer constants in any base. Table 34-2 lists the
notations used to specify bases.

Table 34-2: Specifying Different Number Bases

Notation Description

number By default, numbers without any notation are treated as decimal
(base 10) integers.

0number In arithmetic expressions, numbers with a leading zero are
considered octal.

0xnumber Hexadecimal notation.

base#number number is in base

Here are some examples:

482

Arithmetic Evaluation and Expansion

[me@linuxbox ~]$ echo $((0xff))
255
[me@linuxbox ~]$ echo $((2#11111111))
255

In the previous examples, we print the value of the hexadecimal number ff (the largest
two-digit number) and the largest eight-digit binary (base 2) number.

Unary Operators

There are two unary operators, + and -, which are used to indicate whether a number is
positive or negative, respectively. An example is -5.

Simple Arithmetic

The ordinary arithmetic operators are listed in Table 34-3.

Table 34-3: Arithmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Integer division

** Exponentiation

% Modulo (remainder)

Most of these are self-explanatory, but integer division and modulo require further dis-
cussion.

Since the shell’s arithmetic operates only on integers, the results of division are always
whole numbers.

[me@linuxbox ~]$ echo $((5 / 2))
2

This makes the determination of a remainder in a division operation more important.

483

34 – Strings and Numbers

[me@linuxbox ~]$ echo $((5 % 2))
1

By using the division and modulo operators, we can determine that 5 divided by 2 results
in 2, with a remainder of 1.

Calculating the remainder is useful in loops. It allows an operation to be performed at
specified intervals during the loop's execution. In the following example, we display a
line of numbers, highlighting each multiple of 5:

#!/bin/bash

modulo: demonstrate the modulo operator

for ((i = 0; i <= 20; i = i + 1)); do
remainder=$((i % 5))
if ((remainder == 0)); then

printf "<%d> " "$i"
else

printf "%d " "$i"
fi

done
printf "\n"

When executed, the results look like this:

[me@linuxbox ~]$ modulo
<0> 1 2 3 4 <5> 6 7 8 9 <10> 11 12 13 14 <15> 16 17 18 19 <20>

Assignment

Although its uses may not be immediately apparent, arithmetic expressions may perform
assignment. We have performed assignment many times, though in a different context.
Each time we give a variable a value, we are performing assignment. We can also do it
within arithmetic expressions.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo $foo

484

Arithmetic Evaluation and Expansion

[me@linuxbox ~]$ if ((foo = 5)); then echo "It is true."; fi
It is true.
[me@linuxbox ~]$ echo $foo
5

In the preceding example, we first assign an empty value to the variable foo and verify
that it is indeed empty. Next, we perform an if with the compound command ((foo
= 5)). This process does two interesting things: it assigns the value of 5 to the vari-
able foo, and it evaluates to true because foo was assigned a non-zero value.

Note: It is important to remember the exact meaning of = in the previous expres-
sion. A single = performs assignment. foo = 5 says “make foo equal to 5,”
while == evaluates equivalence. foo == 5 says “does foo equal 5?” This is a
common feature in many programming languages. In the shell, this can be a little
confusing because the test command accepts a single = for string equivalence.
This is yet another reason to use the more modern [[]] and (()) compound
commands in place of test.

In addition to the = notation, the shell also provides notations that perform some very
useful assignments as shown in Table 34-4.

Table 34-4: Assignment Operators

Notation Description

parameter = value Simple assignment. Assigns value to parameter.

parameter += value Addition. Equivalent to parameter = parameter +
value.

parameter -= value Subtraction. Equivalent to parameter = parameter –
value.

parameter *= value Multiplication. Equivalent to parameter = parameter
* value.

parameter /= value Integer division. Equivalent to parameter =
parameter / value.

parameter %= value Modulo. Equivalent to parameter = parameter %
value.

parameter++ Variable post-increment. Equivalent to parameter =
parameter + 1 (however, see the following

485

34 – Strings and Numbers

discussion).

parameter−− Variable post-decrement. Equivalent to parameter =
parameter − 1.

++parameter Variable pre-increment. Equivalent to parameter =
parameter + 1.

--parameter Variable pre-decrement. Equivalent to parameter =
parameter − 1.

These assignment operators provide a convenient shorthand for many common arithmetic
tasks. Of special interest are the increment (++) and decrement (−−) operators, which in-
crease or decrease the value of their parameters by one. This style of notation is taken
from the C programming language and has been incorporated into a number of other pro-
gramming languages, including bash.

The operators may appear either at the front of a parameter or at the end. While they both
either increment or decrement the parameter by one, the two placements have a subtle
difference. If placed at the front of the parameter, the parameter is incremented (or decre-
mented) before the parameter is returned. If placed after, the operation is performed after
the parameter is returned. This is rather strange, but it is the intended behavior. Here is a
demonstration:

[me@linuxbox ~]$ foo=1
[me@linuxbox ~]$ echo $((foo++))
1
[me@linuxbox ~]$ echo $foo
2

If we assign the value of one to the variable foo and then increment it with the ++ opera-
tor placed after the parameter name, foo is returned with the value of one. However, if
we look at the value of the variable a second time, we see the incremented value. If we
place the ++ operator in front of the parameter, we get the more expected behavior.

[me@linuxbox ~]$ foo=1
[me@linuxbox ~]$ echo $((++foo))
2
[me@linuxbox ~]$ echo $foo
2

486

Arithmetic Evaluation and Expansion

For most shell applications, prefixing the operator will be the most useful.

The ++ and -- operators are often used in conjunction with loops. We will make some im-
provements to our modulo script to tighten it up a bit.

#!/bin/bash

modulo2: demonstrate the modulo operator

for ((i = 0; i <= 20; ++i)); do
if (((i % 5) == 0)); then

printf "<%d> " "$i"
else

printf "%d " "$i"
fi

done
printf "\n"

Bit Operations

One class of operators manipulates numbers in an unusual way. These operators work at
the bit level. They are used for certain kinds of low-level tasks, often involving setting or
reading bit-flags. The bit operators are listed in Table 34-5.

Table 34-5: Bit Operators

Operator Description

~ Bitwise negation. Negate all the bits in a number.

<< Left bitwise shift. Shift all the bits in a number to the left.

>> Right bitwise shift. Shift all the bits in a number to the right.

& Bitwise AND. Perform an AND operation on all the bits in two
numbers.

| Bitwise OR. Perform an OR operation on all the bits in two
numbers.

^ Bitwise XOR. Perform an exclusive OR operation on all the
bits in two numbers.

Note that there are also corresponding assignment operators (for example, <<=) for all
but bitwise negation.

487

34 – Strings and Numbers

Here we will demonstrate producing a list of powers of 2, using the left bitwise shift op-
erator:

[me@linuxbox ~]$ for ((i=0;i<8;++i)); do echo $((1<<i)); done
1
2
4
8
16
32
64
128

Logic

As we discovered in Chapter 27, the (()) compound command supports a variety of
comparison operators. There are a few more that can be used to evaluate logic. Table 34-6
provides the complete list.

Table 34-6: Comparison Operators

Operator Description

<= Less than or equal to.

>= Greater than or equal to.

< Less than.

> Greater than.

== Equal to.

!= Not equal to.

&& Logical AND.

|| Logical OR.

expr1?expr2:expr3 Comparison (ternary) operator. If expression expr1
evaluates to be non-zero (arithmetic true), then expr2;
else expr3.

When used for logical operations, expressions follow the rules of arithmetic logic; that is,
expressions that evaluate as zero are considered false, while non-zero expressions are

488

Arithmetic Evaluation and Expansion

considered true. The (()) compound command maps the results into the shell’s normal
exit codes.

[me@linuxbox ~]$ if ((1)); then echo "true"; else echo "false"; fi
true
[me@linuxbox ~]$ if ((0)); then echo "true"; else echo "false"; fi
false

The strangest of the logical operators is the ternary operator. This operator (which is
modeled after the one in the C programming language) performs a stand-alone logical
test. It can be used as a kind of if/then/else statement. It acts on three arithmetic
expressions (strings won’t work), and if the first expression is true (or non-zero), the sec-
ond expression is performed. Otherwise, the third expression is performed. We can try
this on the command line:

[me@linuxbox ~]$ a=0
[me@linuxbox ~]$ ((a<1?++a:--a))
[me@linuxbox ~]$ echo $a
1
[me@linuxbox ~]$ ((a<1?++a:--a))
[me@linuxbox ~]$ echo $a
0

Here we see a ternary operator in action. This example implements a toggle. Each time
the operator is performed, the value of the variable a switches from zero to one or vice
versa.

Please note that performing assignment within the expressions is not straightforward.
When attempted, bash will declare an error.

[me@linuxbox ~]$ a=0
[me@linuxbox ~]$ ((a<1?a+=1:a-=1))
bash: ((: a<1?a+=1:a-=1: attempted assignment to non-variable (error
token is "-=1")

This problem can be mitigated by surrounding the assignment expression with parenthe-
ses.

[me@linuxbox ~]$ ((a<1?(a+=1):(a-=1)))

489

34 – Strings and Numbers

Next is a more complete example of using arithmetic operators in a script that produces a
simple table of numbers.

#!/bin/bash

arith-loop: script to demonstrate arithmetic operators

finished=0
a=0
printf "a\ta**2\ta**3\n"
printf "=\t====\t====\n"

until ((finished)); do
b=$((a**2))
c=$((a**3))
printf "%d\t%d\t%d\n" "$a" "$b" "$c"
((a<10?++a:(finished=1)))

done

In this script, we implement an until loop based on the value of the finished variable.
Initially, the variable is set to zero (arithmetic false), and we continue the loop until it be-
comes non-zero. Within the loop, we calculate the square and cube of the counter variable
a. At the end of the loop, the value of the counter variable is evaluated. If it is less than
10 (the maximum number of iterations), it is incremented by one, or else the variable
finished is given the value of one, making finished arithmetically true, thereby
terminating the loop. Running the script gives this result:

[me@linuxbox ~]$ arith-loop
a a**2 a**3
= ==== ====
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

490

bc – An Arbitrary Precision Calculator Language

bc – An Arbitrary Precision Calculator Language

We have seen how the shell can handle many types of integer arithmetic, but what if we
need to perform higher math or even just use floating-point numbers? The answer is, we
can’t. At least not directly with the shell. To do this, we need to use an external program.
There are several approaches we can take. Embedding Perl or AWK programs is one pos-
sible solution, but unfortunately, it’s outside the scope of this book.

Another approach is to use a specialized calculator program. One such program found on
many Linux systems is called bc.

The bc program reads a file written in its own C-like language and executes it. A bc
script may be a separate file, or it may be read from standard input. The bc language sup-
ports quite a few features including variables, loops, and programmer-defined functions.
We won’t cover bc entirely here, just enough to get a taste. bc is well documented by its
man page.

Let’s start with a simple example. We’ll write a bc script to add 2 plus 2.

/* A very simple bc script */

2 + 2

The first line of the script is a comment. bc uses the same syntax for comments as the C
programming language. Comments, which may span multiple lines, begin with /* and
end with */.

Using bc

If we save the previous bc script as foo.bc, we can run it this way:

[me@linuxbox ~]$ bc foo.bc
bc 1.06.94
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software
Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
4

If we look carefully, we can see the result at the very bottom, after the copyright message.
This message can be suppressed with the -q (quiet) option.

491

34 – Strings and Numbers

bc can also be used interactively.

[me@linuxbox ~]$ bc -q
2 + 2
4
quit

When using bc interactively, we simply type the calculations we want to perform, and
the results are immediately displayed. The bc command quit ends the interactive ses-
sion.

It is also possible to pass a script to bc via standard input.

[me@linuxbox ~]$ bc < foo.bc
4

The ability to take standard input means that we can use here documents, here strings,
and pipes to pass scripts. This is a here string example:

[me@linuxbox ~]$ bc <<< "2+2"
4

An Example Script

As a real-world example, we will construct a script that performs a common calculation,
monthly loan payments. In the script below, we use a here document to pass a script to
bc:

#!/bin/bash

loan-calc: script to calculate monthly loan payments

PROGNAME="${0##*/}" # Use parameter expansion to get basename

usage () {
cat <<- EOF
Usage: $PROGNAME PRINCIPAL INTEREST MONTHS

492

bc – An Arbitrary Precision Calculator Language

Where:

PRINCIPAL is the amount of the loan.
INTEREST is the APR as a number (7% = 0.07).
MONTHS is the length of the loan's term.

EOF
}

if (($# != 3)); then
usage
exit 1

fi

principal=$1
interest=$2
months=$3

bc <<- EOF
scale = 10
i = $interest / 12
p = $principal
n = $months
a = p * ((i * ((1 + i) ^ n)) / (((1 + i) ^ n) - 1))
print a, "\n"

EOF

When executed, the results look like this:

[me@linuxbox ~]$ loan-calc 135000 0.0775 180
1270.7222490000

This example calculates the monthly payment for a $135,000 loan at 7.75 percent APR
for 180 months (15 years). Notice the precision of the answer. This is determined by the
value given to the special scale variable in the bc script. A full description of the bc
scripting language is provided by the bc man page. While its mathematical notation is
slightly different from that of the shell (bc more closely resembles C), most of it will be
quite familiar, based on what we have learned so far.

Summing Up

In this chapter, we learned about many of the little things that can be used to get the “real

493

34 – Strings and Numbers

work” done in scripts. As our experience with scripting grows, the ability to effectively
manipulate strings and numbers will prove extremely valuable. Our loan-calc script
demonstrates that even simple scripts can be created to do some really useful things.

Extra Credit

While the basic functionality of the loan-calc script is in place, the script is far from
complete. For extra credit, try improving the loan-calc script with the following fea-
tures:

● Full verification of the command line arguments

● A command line option to implement an “interactive” mode that will prompt the
user to input the principal, interest rate, and term of the loan

● A better format for the output

Further Reading

● The Bash Hackers Wiki has a good discussion of parameter expansion:
http://wiki.bash-hackers.org/syntax/pe

● The Bash Reference Manual covers this, too:
http://www.gnu.org/software/bash/manual/bashref.html#Shell-Parameter-Expan-
sion

● The Wikipedia has a good article describing bit operations:
http://en.wikipedia.org/wiki/Bit_operation

● and an article on ternary operations:
http://en.wikipedia.org/wiki/Ternary_operation

● as well as a description of the formula for calculating loan payments used in our
loan-calc script:
http://en.wikipedia.org/wiki/Amortization_calculator

494

http://en.wikipedia.org/wiki/Amortization_calculator
http://en.wikipedia.org/wiki/Ternary_operation
http://en.wikipedia.org/wiki/Bit_operation
http://www.gnu.org/software/bash/manual/bashref.html#Shell-Parameter-Expansion
http://www.gnu.org/software/bash/manual/bashref.html#Shell-Parameter-Expansion
http://wiki.bash-hackers.org/syntax/pe

