
33 – Flow Control: Looping with for

33 – Flow Control: Looping with for

In this final chapter on flow control, we will look at another of the shell’s looping con-
structs. The for loop differs from the while and until loops in that it provides a means of
processing sequences during a loop. This turns out to be very useful when programming.
Accordingly, the for loop is a popular construct in bash scripting.

A for loop is implemented, naturally enough, with the for compound command. In
bash, for is available in two forms.

for: Traditional Shell Form

The original for command’s syntax is as follows:

for variable [in words]; do
commands

done

where variable is the name of a variable that will increment during the execution of
the loop, words is an optional list of items that will be sequentially assigned to vari-
able, and commands are the commands that are to be executed on each iteration of the
loop.

The for command is useful on the command line. We can easily demonstrate how it
works.

[me@linuxbox ~]$ for i in A B C D; do echo $i; done
A
B
C
D

In this example, for is given a list of four words: A, B, C, and D. With a list of four
words, the loop is executed four times. Each time the loop is executed, a word is assigned
to the variable i. Inside the loop, we have an echo command that displays the value of i
to show the assignment. As with the while and until loops, the done keyword closes

466

for: Traditional Shell Form

the loop.

The really powerful feature of for is the number of interesting ways we can create the
list of words. For example, we can do it through brace expansion, like so:

[me@linuxbox ~]$ for i in {A..D}; do echo $i; done
A
B
C
D

or we could use pathname expansion, as follows:

[me@linuxbox ~]$ for i in distros*.txt; do echo "$i"; done
distros-by-date.txt
distros-dates.txt
distros-key-names.txt
distros-key-vernums.txt
distros-names.txt
distros.txt
distros-vernums.txt
distros-versions.txt

Pathname expansion provides a nice, clean list of pathnames that can be processed in the
loop. The one precaution needed is to check that the expansion actually matched some-
thing. By default, if the expansion fails to match any files, the wildcards themselves
("distros*.txt" in the example above) will be returned. To guard against this, we would
code the example above in a script this way:

for i in distros*.txt; do
if [[-e "$i"]]; then

echo "$i"
fi

done

By adding a test for file existence, we will ignore a failed expansion.

Another common method of word production is command substitution.

#!/bin/bash

467

33 – Flow Control: Looping with for

longest-word: find longest string in a file

while [[-n "$1"]]; do
if [[-r "$1"]]; then

max_word=
max_len=0
for i in $(strings "$1"); do

len="$(echo -n "$i" | wc -c)"
if ((len > max_len)); then

max_len="$len"
max_word="$i"

fi
done
echo "$1: '$max_word' ($max_len characters)"

fi
shift

done

In this example, we look for the longest string found within a file. When given one or
more filenames on the command line, this program uses the strings program (which is
included in the GNU binutils package) to generate a list of readable text “words” in each
file. The for loop processes each word in turn and determines whether the current word
is the longest found so far. When the loop concludes, the longest word is displayed.

One thing to note here is that, contrary to our usual practice, we do not surround the com-
mand substitution $(strings "$1") with double quotes. This is because we actually
want word splitting to occur to give us our list. If we had surrounded the command sub-
stitution with quotes, it would produce only a single word containing every string in the
file. That’s not exactly what we are looking for.

If the optional in words portion of the for command is omitted, for defaults to pro-
cessing the positional parameters. We will modify our longest-word script to use this
method:

#!/bin/bash

longest-word2: find longest string in a file

for i; do
if [[-r "$i"]]; then

max_word=

468

for: Traditional Shell Form

max_len=0
for j in $(strings "$i"); do

len="$(echo -n "$j" | wc -c)"
if ((len > max_len)); then

max_len="$len"
max_word="$j"

fi
done
echo "$i: '$max_word' ($max_len characters)"

fi
done

As we can see, we have changed the outermost loop to use for in place of while. By
omitting the list of words in the for command, the positional parameters are used in-
stead. Inside the loop, previous instances of the variable i have been changed to the vari-
able j. The use of shift has also been eliminated.

Why i?

You may have noticed that the variable i was chosen for each of the previous
for loop examples. Why? No specific reason actually besides tradition. The vari-
able used with for can be any valid variable, but i is the most common, fol-
lowed by j and k.

The basis of this tradition comes from the Fortran programming language. In For-
tran, undeclared variables starting with the letters I, J, K, L, and M are automati-
cally typed as integers, while variables beginning with any other letter are typed
as reals (numbers with decimal fractions). This behavior led programmers to use
the variables I, J, and K for loop variables since it was less work to use them
when a temporary variable (as loop variables often are) was needed.

It also led to the following Fortran-based witticism:

“GOD is real, unless declared integer.”

for: C Language Form

Recent versions of bash have added a second form of for command syntax, one that
resembles the form found in the C programming language. Many other languages support
this form, as well.

469

33 – Flow Control: Looping with for

for ((expression1; expression2; expression3)); do
commands

done

Here expression1, expression2, and expression3 are arithmetic expressions
and commands are the commands to be performed during each iteration of the loop.

In terms of behavior, this form is equivalent to the following construct:

((expression1))
while ((expression2)); do

commands
((expression3))

done

expression1 is used to initialize conditions for the loop, expression2 is used to
determine when the loop is finished, and expression3 is carried out at the end of each
iteration of the loop.

Here is a typical application:

#!/bin/bash

simple_counter: demo of C style for command

for ((i=0; i<5; i=i+1)); do
echo $i

done

When executed, it produces the following output:

[me@linuxbox ~]$ simple_counter
0
1
2
3
4

In this example, expression1 initializes the variable i with the value of zero, ex-
pression2 allows the loop to continue as long as the value of i remains less than 5,
and expression3 increments the value of i by 1 each time the loop repeats.

The C language form of for is useful anytime a numeric sequence is needed. We will see
several applications for this in the next two chapters.

470

Summing Up

Summing Up

With our knowledge of the for command, we will now apply the final improvements to
our sys_info_page script. Currently, the report_home_space function looks
like this:

report_home_space () {
if [["$(id -u)" -eq 0]]; then

cat <<- _EOF_
<h2>Home Space Utilization (All Users)</h2>
<pre>$(du -sh /home/*)</pre>
EOF

else
cat <<- _EOF_

<h2>Home Space Utilization ($USER)</h2>
<pre>$(du -sh "$HOME")</pre>
EOF

fi
return

}

Next, we will rewrite it to provide more detail for each user’s home directory and include
the total number of files and subdirectories in each.

report_home_space () {

local format="%8s%10s%10s\n"
local i dir_list total_files total_dirs total_size user_name

if [["$(id -u)" -eq 0]]; then
dir_list=/home/*
user_name="All Users"

else
dir_list="$HOME"
user_name="$USER"

fi

echo "<h2>Home Space Utilization ($user_name)</h2>"

for i in $dir_list; do

total_files="$(find "$i" -type f | wc -l)"

471

33 – Flow Control: Looping with for

total_dirs="$(find "$i" -type d | wc -l)"
total_size="$(du -sh "$i" | cut -f 1)"

echo "<H3>$i</H3>"
echo "<pre>"
printf "$format" "Dirs" "Files" "Size"
printf "$format" "----" "-----" "----"
printf "$format" "$total_dirs" "$total_files" "$total_size"
echo "</pre>"

done
return

}

This rewrite applies much of what we have learned so far. We still test for the superuser,
but instead of performing the complete set of actions as part of the if, we set some vari-
ables used later in a for loop. We have added several local variables to the function and
made use of printf to format some of the output.

Further Reading

● The Advanced Bash-Scripting Guide has a chapter on loops, with a variety of ex-
amples using for:
http://tldp.org/LDP/abs/html/loops1.html

● The Bash Reference Manual describes the looping compound commands, includ-
ing for:
http://www.gnu.org/software/bash/manual/bashref.html#Looping-Constructs

472

http://www.gnu.org/software/bash/manual/bashref.html#Looping-Constructs
http://tldp.org/LDP/abs/html/loops1.html

