
31 – Flow Control: Branching with case

31 – Flow Control: Branching with case

In this chapter, we will continue our look at flow control. In Chapter 28, “Reading Key-
board Input,” we constructed some simple menus and built the logic used to act on a
user’s selection. To do this, we used a series of if commands to identify which of the
possible choices had been selected. This type of logical construct appears frequently in
programs, so much so that many programming languages (including the shell) provide a
special flow control mechanism for multiple-choice decisions.

case

In bash, multiple-choice compound command is called case. It has the following syn-
tax:

case word in
[pattern [| pattern]...) commands ;;]...

esac

If we look at the read-menu program from Chapter 28, we see the logic used to act on
a user’s selection.

#!/bin/bash

read-menu: a menu driven system information program

clear
echo "
Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit
"
read -p "Enter selection [0-3] > "

444

case

if [["$REPLY" =~ ^[0-3]$]]; then
if [["$REPLY" == 0]]; then

echo "Program terminated."
exit

fi
if [["$REPLY" == 1]]; then

echo "Hostname: $HOSTNAME"
uptime
exit

fi
if [["$REPLY" == 2]]; then

df -h
exit

fi
if [["$REPLY" == 3]]; then

if [["$(id -u)" -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh "$HOME"

fi
exit

fi
else

echo "Invalid entry." >&2
exit 1

fi

Using case, we can replace this logic with something simpler.

#!/bin/bash

case-menu: a menu driven system information program

clear
echo "
Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization

445

31 – Flow Control: Branching with case

0. Quit
"
read -p "Enter selection [0-3] > "

case "$REPLY" in
0) echo "Program terminated."

exit
;;

1) echo "Hostname: $HOSTNAME"
uptime
;;

2) df -h
;;

3) if [["$(id -u)" -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh "$HOME"

fi
;;

*) echo "Invalid entry" >&2
exit 1
;;

esac

The case command looks at the value of word, which in our example, the value of the
REPLY variable, and then attempts to match it against one of the specified patterns.
When a match is found, the commands associated with the specified pattern are executed.
After a match is found, no further matches are attempted.

Patterns

The patterns used by case are the same as those used by pathname expansion. Patterns
are terminated with a “)” character. Table 31-1 lists examples of valid patterns.

Table 31- 1: case Pattern Examples

Pattern Description

a) Matches if word equals “a”.

[[:alpha:]]) Matches if word is a single alphabetic character.

446

case

???) Matches if word is exactly three characters long.

*.txt) Matches if word ends with the characters “.txt”.

*) Matches any value of word. It is good practice to include this
as the last pattern in a case command, to catch any values of
word that did not match a previous pattern, that is, to catch any
possible invalid values.

Here is an example of patterns at work:

#!/bin/bash

read -p "enter word > "

case "$REPLY" in
[[:alpha:]]) echo "is a single alphabetic character." ;;
[ABC][0-9]) echo "is A, B, or C followed by a digit." ;;
???) echo "is three characters long." ;;
*.txt) echo "is a word ending in '.txt'" ;;
*) echo "is something else." ;;

esac

It is also possible to combine multiple patterns using the vertical bar character as a sepa-
rator. This creates an “or” conditional pattern. This is useful for such things as handling
both uppercase and lowercase characters. Here’s an example:

#!/bin/bash

case-menu: a menu driven system information program

clear
echo "
Please Select:

A. Display System Information
B. Display Disk Space
C. Display Home Space Utilization
Q. Quit
"
read -p "Enter selection [A, B, C or Q] > "

447

31 – Flow Control: Branching with case

case "$REPLY" in
q|Q) echo "Program terminated."

exit
;;

a|A) echo "Hostname: $HOSTNAME"
uptime
;;

b|B) df -h
;;

c|C) if [["$(id -u)" -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh "$HOME"

fi
;;

*) echo "Invalid entry" >&2
exit 1
;;

esac

Here, we modify the case-menu program to use letters instead of digits for menu selec-
tion. Notice how the new patterns allow for entry of both uppercase and lowercase letters.

Performing Multiple Actions

In versions of bash prior to 4.0, case allowed only one action to be performed on a
successful match. After a successful match, the command would terminate. Here we see
a script that tests a character:

#!/bin/bash

case4-1: test a character

read -n 1 -p "Type a character > "
echo
case "$REPLY" in
 [[:upper:]]) echo "'$REPLY' is upper case." ;;
 [[:lower:]]) echo "'$REPLY' is lower case." ;;
 [[:alpha:]]) echo "'$REPLY' is alphabetic." ;;

448

case

 [[:digit:]]) echo "'$REPLY' is a digit." ;;
 [[:graph:]]) echo "'$REPLY' is a visible character." ;;
 [[:punct:]]) echo "'$REPLY' is a punctuation symbol." ;;
 [[:space:]]) echo "'$REPLY' is a whitespace character." ;;
 [[:xdigit:]]) echo "'$REPLY' is a hexadecimal digit." ;;
esac

Running this script produces this:

[me@linuxbox ~]$ case4-1
Type a character > a
'a' is lower case.

The script works for the most part but fails if a character matches more than one of the
POSIX character classes. For example, the character "a" is both lowercase and alpha-
betic, as well as a hexadecimal digit. In bash prior to version 4.0 there was no way for
case to match more than one test. Modern versions of bash add the ;;& notation to
terminate each action, so now we can do this:

#!/bin/bash

case4-2: test a character

read -n 1 -p "Type a character > "
echo
case "$REPLY" in
 [[:upper:]]) echo "'$REPLY' is upper case." ;;&
 [[:lower:]]) echo "'$REPLY' is lower case." ;;&
 [[:alpha:]]) echo "'$REPLY' is alphabetic." ;;&
 [[:digit:]]) echo "'$REPLY' is a digit." ;;&
 [[:graph:]]) echo "'$REPLY' is a visible character." ;;&
 [[:punct:]]) echo "'$REPLY' is a punctuation symbol." ;;&
 [[:space:]]) echo "'$REPLY' is a whitespace character." ;;&
 [[:xdigit:]]) echo "'$REPLY' is a hexadecimal digit." ;;&
esac

When we run this script, we get this:

[me@linuxbox ~]$ case4-2

449

31 – Flow Control: Branching with case

Type a character > a
'a' is lower case.
'a' is alphabetic.
'a' is a visible character.
'a' is a hexadecimal digit.

The addition of the ;;& syntax allows case to continue to the next test rather than sim-
ply terminating.

Summing Up

The case command is a handy addition to our bag of programming tricks. As we will
see in the next chapter, it’s the perfect tool for handling certain types of problems.

Further Reading

● The Bash Reference Manual section on Conditional Constructs describes the
case command in detail:
http://tiswww.case.edu/php/chet/bash/bashref.html#SEC21

● The Advanced Bash-Scripting Guide provides further examples of case applica-
tions:
http://tldp.org/LDP/abs/html/testbranch.html

450

http://tldp.org/LDP/abs/html/testbranch.html
http://tiswww.case.edu/php/chet/bash/bashref.html#SEC21

