
29 – Flow Control: Looping with while / until

29 – Flow Control: Looping with while /
until

In the previous chapter, we developed a menu-driven program to produce various kinds
of system information. The program works, but it still has a significant usability problem.
It executes only a single choice and then terminates. Even worse, if an invalid selection is
made, the program terminates with an error, without giving the user an opportunity to try
again. It would be better if we could somehow construct the program so that it could re-
peat the menu display and selection over and over, until the user chooses to exit the pro-
gram.

In this chapter, we will look at a programming concept called looping, which can be used
to make portions of programs repeat. The shell provides three compound commands for
looping. We will look at two of them in this chapter, and the third in a later chapter.

Looping

Daily life is full of repeated activities. Going to work each day, walking the dog, and slic-
ing a carrot are all tasks that involve repeating a series of steps. Let’s consider slicing a
carrot. If we express this activity in pseudocode, it might look something like this:

1. get cutting board

2. get knife

3. place carrot on cutting board

4. lift knife

5. advance carrot

6. slice carrot

7. if entire carrot sliced, then quit; else go to step 4

Steps 4 through 7 form a loop. The actions within the loop are repeated until the condi-
tion, “entire carrot sliced,” is reached.

423

29 – Flow Control: Looping with while / until

while

bash can express a similar idea. Let’s say we wanted to display five numbers in sequen-
tial order from 1 to 5. a bash script could be constructed as follows:

#!/bin/bash

while-count: display a series of numbers

count=1

while [["$count" -le 5]]; do
echo "$count"
count=$((count + 1))

done
echo "Finished."

When executed, this script displays the following:

[me@linuxbox ~]$ while-count
1
2
3
4
5
Finished.

The syntax of the while command is as follows:

while commands; do commands; done

Like if, while evaluates the exit status of a list of commands. As long as the exit status
is zero, it performs the commands inside the loop. In the previous script, the variable
count is created and assigned an initial value of 1. The while command evaluates the
exit status of the [[]] compound command. As long as the [[]] command returns an
exit status of zero, the commands within the loop are executed. At the end of each cycle,
the [[]] command is repeated. After five iterations of the loop, the value of count has
increased to 6, the [[]] command no longer returns an exit status of zero, and the loop
terminates. The program continues with the next statement following the loop.

We can use a while loop to improve the read-menu program from the previous chapter.

424

Looping

#!/bin/bash

while-menu: a menu driven system information program

DELAY=3 # Number of seconds to display results

while [["$REPLY" != 0]]; do
clear
cat <<- _EOF_

Please Select:

 1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit

EOF
read -p "Enter selection [0-3] > "

if [["$REPLY" =~ ^[0-3]$]]; then
if [[$REPLY == 1]]; then

echo "Hostname: $HOSTNAME"
uptime
sleep "$DELAY"

fi
if [["$REPLY" == 2]]; then

df -h
sleep "$DELAY"

fi
if [["$REPLY" == 3]]; then

if [["$(id -u)" -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh "$HOME"

fi
sleep "$DELAY"

fi
else

echo "Invalid entry."
sleep "$DELAY"

fi
done

425

29 – Flow Control: Looping with while / until

echo "Program terminated."

By enclosing the menu in a while loop, we are able to have the program repeat the menu
display after each selection. The loop continues as long as REPLY is not equal to 0 and
the menu is displayed again, giving the user the opportunity to make another selection. At
the end of each action, a sleep command is executed so the program will pause for a
few seconds to allow the results of the selection to be seen before the screen is cleared
and the menu is redisplayed. Once REPLY is equal to 0, indicating the “quit” selection,
the loop terminates and execution continues with the line following done.

Breaking Out of a Loop

bash provides two builtin commands that can be used to control program flow inside
loops. The break command immediately terminates a loop, and program control re-
sumes with the next statement following the loop. The continue command causes the
remainder of the loop to be skipped, and program control resumes with the next iteration
of the loop. Here we see a version of the while-menu program incorporating both
break and continue:

#!/bin/bash

while-menu2: a menu driven system information program

DELAY=3 # Number of seconds to display results

while true; do
clear
cat <<- _EOF_

Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit

EOF
read -p "Enter selection [0-3] > "

if [["$REPLY" =~ ^[0-3]$]]; then
if [["$REPLY" == 1]]; then

echo "Hostname: $HOSTNAME"

426

Breaking Out of a Loop

uptime
sleep "$DELAY"
continue

fi
if [["$REPLY" == 2]]; then

df -h
sleep "$DELAY"
continue

fi
if [["$REPLY" == 3]]; then

if [["$(id -u)" -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh "$HOME"

fi
sleep "$DELAY"
continue

fi
if [["$REPLY" == 0]]; then

break
fi

else
echo "Invalid entry."
sleep "$DELAY"

fi
done
echo "Program terminated."

In this version of the script, we set up an endless loop (one that never terminates on its
own) by using the true command to supply an exit status to while. Since true will
always exit with an exit status of zero, the loop will never end. This is a surprisingly com-
mon scripting technique. Since the loop will never end on its own, it’s up to the program-
mer to provide some way to break out of the loop when the time is right. In this script, the
break command is used to exit the loop when the 0 selection is chosen. The con-
tinue command has been included at the end of the other script choices to allow for
more efficient execution. By using continue, the script will skip over code that is not
needed when a selection is identified. For example, if the 1 selection is chosen and iden-
tified, there is no reason to test for the other selections.

427

29 – Flow Control: Looping with while / until

until

The until command is much like while, except instead of exiting a loop when a non-
zero exit status is encountered, it does the opposite. An until loop continues until it re-
ceives a zero exit status. In our while-count script, we continued the loop as long as
the value of the count variable was less than or equal to 5. We could get the same result
by coding the script with until.

#!/bin/bash

until-count: display a series of numbers

count=1

until [["$count" -gt 5]]; do
echo "$count"
count=$((count + 1))

done
echo "Finished."

By changing the test expression to $count -gt 5, until will terminate the loop at
the correct time. The decision of whether to use the while or until loop is usually a
matter of choosing the one that allows the clearest test to be written.

Reading Files with Loops

while and until can process standard input. This allows files to be processed with
while and until loops. In the following example, we will display the contents of the dis-
tros.txt file used in earlier chapters:

#!/bin/bash

while-read: read lines from a file

while read distro version release; do
printf "Distro: %s\tVersion: %s\tReleased: %s\n" \

"$distro" \
"$version" \
"$release"

done < distros.txt

428

Reading Files with Loops

To redirect a file to the loop, we place the redirection operator after the done statement.
The loop will use read to input the fields from the redirected file. The read command
will exit after each line is read, with a zero exit status until the end-of-file is reached. At
that point, it will exit with a non-zero exit status, thereby terminating the loop. It is also
possible to pipe standard input into a loop.

#!/bin/bash

while-read2: read lines from a file

sort -k 1,1 -k 2n distros.txt | while read distro version release; do

printf "Distro: %s\tVersion: %s\tReleased: %s\n" \
"$distro" \
"$version" \
"$release"

done

Here we take the output of the sort command and display the stream of text. However,
it is important to remember that since a pipe will execute the loop in a subshell, any vari-
ables created or assigned within the loop will be lost when the loop terminates.

Summing Up

With the introduction of loops and our previous encounters with branching, subroutines
and sequences, we have covered the major types of flow control used in programs. bash
has some more tricks up its sleeve, but they are refinements on these basic concepts.

Further Reading

● The Bash Guide for Beginners from the Linux Documentation Project has some
more examples of while loops:
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_09_02.html

● The Wikipedia has an article on loops, which is part of a larger article on flow
control:
http://en.wikipedia.org/wiki/Control_flow#Loops

429

http://en.wikipedia.org/wiki/Control_flow#Loops
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_09_02.html

