
28 – Reading Keyboard Input

28 – Reading Keyboard Input

The scripts we have written so far lack a feature common in most computer programs — 
interactivity, that is, the ability of the program to interact with the user. While many pro-
grams don’t need to be interactive, some programs benefit from being able to accept input
directly from the user. Take, for example, this script from the previous chapter:

#!/bin/bash

test-integer2: evaluate the value of an integer.

INT=-5

if [["$INT" =~ ^-?[0-9]+$]]; then
if ["$INT" -eq 0]; then

echo "INT is zero."
else

if ["$INT" -lt 0]; then
echo "INT is negative."

else
echo "INT is positive."

fi
if [$((INT % 2)) -eq 0]; then

echo "INT is even."
else

echo "INT is odd."
fi

fi
else

echo "INT is not an integer." >&2
exit 1

fi

Each time we want to change the value of INT, we have to edit the script. It would be
much more useful if the script could ask the user for a value. In this chapter, we will be-

410

28 – Reading Keyboard Input

gin to look at how we can add interactivity to our programs.

read – Read Values from Standard Input

The read builtin command is used to read a single line of standard input. This command
can be used to read keyboard input or, when redirection is employed, a line of data from a
file. The command has the following syntax:

read [-options] [variable...]

where options is one or more of the available options listed later in Table 28-1 and vari-
able is the name of one or more variables used to hold the input value. If no variable
name is supplied, the shell variable REPLY contains the line of data.

Basically, read assigns fields from standard input to the specified variables. If we mod-
ify our integer evaluation script to use read, it might look like this:

#!/bin/bash

read-integer: evaluate the value of an integer.

echo -n "Please enter an integer -> "
read int

if [["$int" =~ ^-?[0-9]+$]]; then
if ["$int" -eq 0]; then

echo "$int is zero."
else

if ["$int" -lt 0]; then
echo "$int is negative."

else
echo "$int is positive."

fi
if [$((int % 2)) -eq 0]; then

echo "$int is even."
else

echo "$int is odd."
fi

fi
else

echo "Input value is not an integer." >&2
exit 1

fi

411

28 – Reading Keyboard Input

We use echo with the -n option (which suppresses the trailing newline on output) to
display a prompt, and then we use read to input a value for the variable int. Running
this script results in this:

[me@linuxbox ~]$ read-integer
Please enter an integer -> 5
5 is positive.
5 is odd.

read can assign input to multiple variables, as shown in this script:

#!/bin/bash

read-multiple: read multiple values from keyboard

echo -n "Enter one or more values > "
read var1 var2 var3 var4 var5

echo "var1 = '$var1'"
echo "var2 = '$var2'"
echo "var3 = '$var3'"
echo "var4 = '$var4'"
echo "var5 = '$var5'"

In this script, we assign and display up to five values. Notice how read behaves when
given different numbers of values, shown here:

[me@linuxbox ~]$ read-multiple
Enter one or more values > a b c d e
var1 = 'a'
var2 = 'b'
var3 = 'c'
var4 = 'd'
var5 = 'e'
[me@linuxbox ~]$ read-multiple
Enter one or more values > a
var1 = 'a'
var2 = ''
var3 = ''
var4 = ''

412

read – Read Values from Standard Input

var5 = ''
[me@linuxbox ~]$ read-multiple
Enter one or more values > a b c d e f g
var1 = 'a'
var2 = 'b'
var3 = 'c'
var4 = 'd'
var5 = 'e f g'

If read receives fewer than the expected number, the extra variables are empty, while an
excessive amount of input results in the final variable containing all of the extra input.

If no variables are listed after the read command, a shell variable, REPLY, will be as-
signed all the input.

#!/bin/bash

read-single: read multiple values into default variable

echo -n "Enter one or more values > "
read

echo "REPLY = '$REPLY'"

Running this script results in this:

[me@linuxbox ~]$ read-single
Enter one or more values > a b c d
REPLY = 'a b c d'

Options

read supports the options described in Table 28-1.

Table 28-1: read Options

Option Description

-a array Assign the input to array, starting with index zero. We
will cover arrays in Chapter 35.

413

28 – Reading Keyboard Input

-d delimiter The first character in the string delimiter is used to
indicate the end of input, rather than a newline character.

-e Use Readline to handle input. This permits input editing
in the same manner as the command line.

-i string Use string as a default reply if the user simply presses
Enter. Requires the -e option.

-n num Read num characters of input, rather than an entire line.

-p prompt Display a prompt for input using the string prompt.

-r Raw mode. Do not interpret backslash characters as
escapes.

-s Silent mode. Do not echo characters to the display as
they are typed. This is useful when inputting passwords
and other confidential information.

-t seconds Timeout. Terminate input after seconds. read returns a
non-zero exit status if an input times out.

-u fd Use input from file descriptor fd, rather than standard
input.

Using the various options, we can do interesting things with read. For example, with the
-p option, we can provide a prompt string.

#!/bin/bash

read-single: read multiple values into default variable

read -p "Enter one or more values > "

echo "REPLY = '$REPLY'"

With the -t and -s options, we can write a script that reads “secret” input and times out
if the input is not completed in a specified time.

#!/bin/bash

read-secret: input a secret passphrase

414

read – Read Values from Standard Input

if read -t 10 -sp "Enter secret passphrase > " secret_pass; then
echo -e "\nSecret passphrase = '$secret_pass'"

else
echo -e "\nInput timed out" >&2
exit 1

fi

The script prompts the user for a secret passphrase and waits ten seconds for input. If the
entry is not completed within the specified time, the script exits with an error. Since the -
s option is included, the characters of the passphrase are not echoed to the display as they
are typed.

It's possible to supply the user with a default response using the -e and -i options to-
gether.

#!/bin/bash

read-default: supply a default value if user presses Enter key.

read -e -p "What is your user name? " -i $USER
echo "You answered: '$REPLY'"

In this script, we prompt the user to enter a username and use the environment variable
USER to provide a default value. When the script is run, it displays the default string and
if the user simply presses the Enter key, read will assign the default string to the REPLY
variable.

[me@linuxbox ~]$ read-default
What is your user name? me
You answered: 'me'

IFS

Normally, the shell performs word splitting on the input provided to read. As we have
seen, this means that multiple words separated by one or more spaces become separate
items on the input line and are assigned to separate variables by read. This behavior is
configured by a shell variable named IFS (for Internal Field Separator). The default
value of IFS contains a space, a tab, and a newline character, each of which will separate

415

28 – Reading Keyboard Input

items from one another.

We can adjust the value of IFS to control the separation of fields input to read. For ex-
ample, the /etc/passwd file contains lines of data that use the colon character as a
field separator. By changing the value of IFS to a single colon, we can use read to input
the contents of /etc/passwd and successfully separate fields into different variables.
Here we have a script that does just that:

#!/bin/bash

read-ifs: read fields from a file

FILE=/etc/passwd

read -p "Enter a username > " user_name

file_info="$(grep "^$user_name:" $FILE)"

if [-n "$file_info"]; then
IFS=":" read user pw uid gid name home shell <<< "$file_info"
echo "User = '$user'"
echo "UID = '$uid'"
echo "GID = '$gid'"
echo "Full Name = '$name'"
echo "Home Dir. = '$home'"
echo "Shell = '$shell'"

else
echo "No such user '$user_name'" >&2
exit 1

fi

This script prompts the user to enter the username of an account on the system and then
displays the different fields found in the user’s record in the /etc/passwd file. The
script contains two interesting lines. The first is as follows:

file_info=$(grep "^$user_name:" $FILE)

This line assigns the results of a grep command to the variable file_info. The regu-
lar expression used by grep assures that the username will match only a single line in
the /etc/passwd file.

The second interesting line is this one:

IFS=":" read user pw uid gid name home shell <<< "$file_info"

416

read – Read Values from Standard Input

The line consists of three parts: a variable assignment, a read command with a list of
variable names as arguments, and a strange new redirection operator. We’ll look at the
variable assignment first.

The shell allows one or more variable assignments to take place immediately before a
command. These assignments alter the environment for the command that follows. The
effect of the assignment is temporary changing only the environment for the duration of
the command. In our case, the value of IFS is changed to a colon character. Alternately,
we could have coded it this way:

OLD_IFS="$IFS"
IFS=":"
read user pw uid gid name home shell <<< "$file_info"
IFS="$OLD_IFS"

where we store the value of IFS, assign a new value, perform the read command, and
then restore IFS to its original value. Clearly, placing the variable assignment in front of
the command is a more concise way of doing the same thing.

The <<< operator indicates a here string. A here string is like a here document, only
shorter, consisting of a single string. In our example, the line of data from the /etc/
passwd file is fed to the standard input of the read command. We might wonder why
this rather oblique method was chosen rather than thsi:

echo "$file_info" | IFS=":" read user pw uid gid name home shell

Well, there’s a reason...

You Can’t Pipe read

While the read command normally takes input from standard input, you cannot
do this:

echo "foo" | read

We would expect this to work, but it does not. The command will appear to suc-
ceed, but the REPLY variable will always be empty. Why is this?

The explanation has to do with the way the shell handles pipelines. In bash (and
other shells such as sh), pipelines create subshells. These are copies of the shell
and its environment that are used to execute the command in the pipeline. In our
previous example, read is executed in a subshell.

Subshells in Unix-like systems create copies of the environment for the processes
to use while they execute. When the processes finishes, the copy of the environ-

417

28 – Reading Keyboard Input

ment is destroyed. This means that a subshell can never alter the environment of
its parent process. read assigns variables, which then become part of the envi-
ronment. In the previous example, read assigns the value foo to the variable
REPLY in its subshell’s environment, but when the command exits, the subshell
and its environment are destroyed, and the effect of the assignment is lost.

Using here strings is one way to work around this behavior. Another method is
discussed in Chapter 36.

Validating Input

With our new ability to have keyboard input comes an additional programming challenge,
validating input. Often the difference between a well-written program and a poorly writ-
ten one lies in the program’s ability to deal with the unexpected. Frequently, the unex-
pected appears in the form of bad input. We’ve done a little of this with our evaluation
programs in the previous chapter, where we checked the values of integers and screened
out empty values and non-numeric characters. It is important to perform these kinds of
programming checks every time a program receives input to guard against invalid data.
This is especially important for programs that are shared by multiple users. Omitting
these safeguards in the interests of economy might be excused if a program is to be used
once and only by the author to perform some special task. Even then, if the program per-
forms dangerous tasks such as deleting files, it would be wise to include data validation,
just in case.

Here we have an example program that validates various kinds of input:

#!/bin/bash

read-validate: validate input

invalid_input () {
echo "Invalid input '$REPLY'" >&2
exit 1

}

read -p "Enter a single item > "

input is empty (invalid)
[[-z "$REPLY"]] && invalid_input

418

Validating Input

input is multiple items (invalid)
(("$(echo "$REPLY" | wc -w)" > 1)) && invalid_input

is input a valid filename?
if [["$REPLY" =~ ^[-[:alnum:]\._]+$]]; then

echo "'$REPLY' is a valid filename."
if [[-e "$REPLY"]]; then

echo "And file '$REPLY' exists."
else

echo "However, file '$REPLY' does not exist."
fi

is input a floating point number?
if [["$REPLY" =~ ^-?[[:digit:]]*\.[[:digit:]]+$]]; then

echo "'$REPLY' is a floating point number."
else

echo "'$REPLY' is not a floating point number."
fi

is input an integer?
if [["$REPLY" =~ ^-?[[:digit:]]+$]]; then

echo "'$REPLY' is an integer."
else

echo "'$REPLY' is not an integer."
fi

else
echo "The string '$REPLY' is not a valid filename."

fi

This script prompts the user to enter an item. The item is subsequently analyzed to deter-
mine its contents. As we can see, the script makes use of many of the concepts that we
have covered thus far, including shell functions, [[]], (()), the control operator
&&, and if, as well as a healthy dose of regular expressions.

Menus

A common type of interactivity is called menu-driven. In menu-driven programs, the user
is presented with a list of choices and is asked to choose one. For example, we could
imagine a program that presented the following:

Please Select:

419

28 – Reading Keyboard Input

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit

Enter selection [0-3] >

Using what we learned from writing our sys_info_page program, we can construct a
menu-driven program to perform the tasks on the previous menu:

#!/bin/bash

read-menu: a menu driven system information program

clear
echo "
Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit
"
read -p "Enter selection [0-3] > "

if [["$REPLY" =~ ^[0-3]$]]; then
if [["$REPLY" == 0]]; then

echo "Program terminated."
exit

fi
if [["$REPLY" == 1]]; then

echo "Hostname: $HOSTNAME"
uptime
exit

fi
if [["$REPLY" == 2]]; then

df -h
exit

fi
if [["$REPLY" == 3]]; then

if [["$(id -u)" -eq 0]]; then
echo "Home Space Utilization (All Users)"

420

Menus

du -sh /home/*
else

echo "Home Space Utilization ($USER)"
du -sh "$HOME"

fi
exit

fi
else

echo "Invalid entry." >&2
exit 1

fi

This script is logically divided into two parts. The first part displays the menu and inputs
the response from the user. The second part identifies the response and carries out the se-
lected action. Notice the use of the exit command in this script. It is used here to pre-
vent the script from executing unnecessary code after an action has been carried out. The
presence of multiple exit points in a program is generally a bad idea (it makes program
logic harder to understand), but it works in this script.

Summing Up

In this chapter, we took our first steps toward interactivity, allowing users to input data
into our programs via the keyboard. Using the techniques presented thus far, it is possible
to write many useful programs, such as specialized calculation programs and easy-to-use
front ends for arcane command line tools. In the next chapter, we will build on the menu-
driven program concept to make it even better.

Extra Credit

It is important to study the programs in this chapter carefully and have a complete under-
standing of the way they are logically structured, as the programs to come will be increas-
ingly complex. As an exercise, rewrite the programs in this chapter using the test com-
mand rather than the [[]] compound command. Hint: Use grep to evaluate the regu-
lar expressions and evaluate the exit status. This will be good practice.

Further Reading

● The Bash Reference Manual contains a chapter on builtins, which includes the
read command:
http://www.gnu.org/software/bash/manual/bashref.html#Bash-Builtins

421

http://www.gnu.org/software/bash/manual/bashref.html#Bash-Builtins

28 – Reading Keyboard Input

422

