
27 – Flow Control: Branching with if

27 – Flow Control: Branching with if

In the previous chapter, we were presented with a problem. How can we make our report-
generator script adapt to the privileges of the user running the script? The solution to this
problem will require us to find a way to “change directions” within our script, based on
the results of a test. In programming terms, we need the program to branch.

Let’s consider a simple example of logic expressed in pseudocode, a simulation of a com-
puter language intended for human consumption.

X = 5

If X = 5, then:

Say “X equals 5.”

Otherwise:

Say “X is not equal to 5.”

This is an example of a branch. Based on the condition, “Does X = 5?” do one thing,
“Say X equals 5,” and otherwise do another thing, “Say X is not equal to 5.”

if

Using the shell, we can code the previous logic as follows:

x=5

if ["$x" -eq 5]; then
echo "x equals 5."

else
echo "x does not equal 5."

fi

Or we can enter it directly at the command line (slightly shortened).

393

27 – Flow Control: Branching with if

[me@linuxbox ~]$ x=5
[me@linuxbox ~]$ if [“$x” -eq 5]; then echo "equals 5"; else echo
"does not equal 5"; fi
equals 5
[me@linuxbox ~]$ x=0
[me@linuxbox ~]$ if [“$x” -eq 5]; then echo "equals 5"; else echo
"does not equal 5"; fi
does not equal 5

In this example, we execute the command twice; once, with the value of x set to 5, which
results in the string “equals 5” being output, and the second time with the value of x set
to 0, which results in the string “does not equal 5” being output.

The if statement has the following syntax:

if commands; then
commands

[elif commands; then
commands...]

[else
commands]

fi

where commands is a list of commands. This is a little confusing at first glance. But be-
fore we can clear this up, we have to look at how the shell evaluates the success or failure
of a command.

Exit Status

Commands (including the scripts and shell functions we write) issue a value to the system
when they terminate, called an exit status. This value, which is an integer in the range of
0 to 255, indicates the success or failure of the command’s execution. By convention, a
value of zero indicates success and any other value indicates failure. The shell provides a
parameter that we can use to examine the exit status. Here we see it in action:

[me@linuxbox ~]$ ls -d /usr/bin
/usr/bin
[me@linuxbox ~]$ echo $?
0
[me@linuxbox ~]$ ls -d /bin/usr
ls: cannot access /bin/usr: No such file or directory
[me@linuxbox ~]$ echo $?
2

394

Exit Status

In this example, we execute the ls command twice. The first time, the command exe-
cutes successfully. If we display the value of the parameter $?, we see that it is zero. We
execute the ls command a second time (specifying a nonexistent directory), producing
an error, and examine the parameter $? again. This time it contains a 2, indicating that
the command encountered an error. Some commands use different exit status values to
provide diagnostics for errors, while many commands simply exit with a value of 1 when
they fail. Man pages often include a section entitled “Exit Status,” describing what codes
are used. However, a zero always indicates success.

The shell provides two extremely simple builtin commands that do nothing except termi-
nate with either a 0 or 1 exit status. The true command always executes successfully
and the false command always executes unsuccessfully.

[me@linuxbox ~]$ true
[me@linuxbox ~]$ echo $?
0
[me@linuxbox ~]$ false
[me@linuxbox ~]$ echo $?
1

We can use these commands to see how the if statement works. What the if statement
really does is evaluate the success or failure of commands.

[me@linuxbox ~]$ if true; then echo "It's true."; fi
It's true.
[me@linuxbox ~]$ if false; then echo "It's true."; fi
[me@linuxbox ~]$

The command echo "It's true." is executed when the command following if exe-
cutes successfully and is not executed when the command following if does not execute
successfully. If a list of commands follows if, the last command in the list is evaluated:

[me@linuxbox ~]$ if false; true; then echo "It's true."; fi
It's true.
[me@linuxbox ~]$ if true; false; then echo "It's true."; fi
[me@linuxbox ~]$

395

27 – Flow Control: Branching with if

test

By far, the command used most frequently with if is test. The test command per-
forms a variety of checks and comparisons. It has two equivalent forms. The first, shown
here:

test expression

And the second, more popular form, shown here:

[expression]

where expression is an expression that is evaluated as either true or false. The test com-
mand returns an exit status of 0 when the expression is true and a status of 1 when the ex-
pression is false.

It is interesting to note that both test and [are actually commands. In bash they are
builtins, but they also exist as programs in /usr/bin for use with other shells. The ex-
pression is actually just its arguments with the [command requiring that the] character
be provided as its final argument.

The test and [commands support a wide range of useful expressions and tests.

File Expressions

Table 27-1 lists the expressions used to evaluate the status of files.

Table 27-1: test File Expressions

Expression Is True If:

file1 -ef file2 file1 and file2 have the same inode numbers (the two
filenames refer to the same file by hard linking).

file1 -nt file2 file1 is newer than file2.

file1 -ot file2 file1 is older than file2.

-b file file exists and is a block-special (device) file.

-c file file exists and is a character-special (device) file.

-d file file exists and is a directory.

-e file file exists.

-f file file exists and is a regular file.

-g file file exists and is set-group-ID.

-G file file exists and is owned by the effective group ID.

396

test

-k file file exists and has its “sticky bit” set.

-L file file exists and is a symbolic link.

-O file file exists and is owned by the effective user ID.

-p file file exists and is a named pipe.

-r file file exists and is readable (has readable permission for
the effective user).

-s file file exists and has a length greater than zero.

-S file file exists and is a network socket.

-t fd fd is a file descriptor directed to/from the terminal. This
can be used to determine whether standard input/output/
error is being redirected.

-u file file exists and is setuid.

-w file file exists and is writable (has write permission for the
effective user).

-x file file exists and is executable (has execute/search
permission for the effective user).

Here we have a script that demonstrates some of the file expressions:

#!/bin/bash

test-file: Evaluate the status of a file

FILE=~/.bashrc

if [-e "$FILE"]; then
if [-f "$FILE"]; then

echo "$FILE is a regular file."
fi
if [-d "$FILE"]; then

echo "$FILE is a directory."
fi
if [-r "$FILE"]; then

echo "$FILE is readable."
fi
if [-w "$FILE"]; then

397

27 – Flow Control: Branching with if

echo "$FILE is writable."
fi
if [-x "$FILE"]; then

echo "$FILE is executable/searchable."
fi

else
echo "$FILE does not exist"
exit 1

fi

exit

The script evaluates the file assigned to the constant FILE and displays its results as the
evaluation is performed. There are two interesting things to note about this script. First,
notice how the parameter $FILE is quoted within the expressions. This is not required to
syntactically complete the expression; rather it is a defense against the parameter being
empty or containing only whitespace. If the parameter expansion of $FILE were to result
in an empty value, it would cause an error (the operators would be interpreted as non-null
strings rather than operators). Using the quotes around the parameter ensures that the op-
erator is always followed by a string, even if the string is empty. Second, notice the pres-
ence of the exit command near the end of the script. The exit command accepts a sin-
gle, optional argument, which becomes the script’s exit status. When no argument is
passed, the exit status defaults to the exit status of the last command executed. Using
exit in this way allows the script to indicate failure if $FILE expands to the name of a
nonexistent file. The exit command appearing on the last line of the script is there as a
formality. When a script “runs off the end” (reaches end of file), it terminates with an exit
status of the last command executed.

Similarly, shell functions can return an exit status by including an integer argument to the
return command. If we were to convert the previous script to a shell function to in-
clude it in a larger program, we could replace the exit commands with return state-
ments and get the desired behavior.

test_file () {

test-file: Evaluate the status of a file

FILE=~/.bashrc

if [-e "$FILE"]; then
if [-f "$FILE"]; then

398

test

echo "$FILE is a regular file."
fi
if [-d "$FILE"]; then

echo "$FILE is a directory."
fi
if [-r "$FILE"]; then

echo "$FILE is readable."
fi
if [-w "$FILE"]; then

echo "$FILE is writable."
fi
if [-x "$FILE"]; then

echo "$FILE is executable/searchable."
fi

else
echo "$FILE does not exist"
return 1

fi

}

String Expressions

Table 27-2 lists the expressions used to evaluate strings:

Table 27-2: test String Expressions

Expression Is True If...

string string is not null.

-n string The length of string is greater than zero.

-z string The length of string is zero.

string1 = string2
string1 == string2

string1 and string2 are equal. Single or double
equal signs may be used. The use of double equal
signs is supported by bash and is generally
preferred, but it is not POSIX compliant.

string1 != string2 string1 and string2 are not equal.

string1 > string2 string1 sorts after string2.

string1 < string2 string1 sorts before string2.

399

27 – Flow Control: Branching with if

Warning: the > and < expression operators must be quoted (or escaped with a
backslash) when used with test. If they are not, they will be interpreted by the
shell as redirection operators, with potentially destructive results. Also note that
while the bash documentation states that the sorting order conforms to the col-
lation order of the current locale, it does not. ASCII (POSIX) order is used in
versions of bash up to and including 4.0. This problem was fixed in version 4.1.

Here is a script that incorporates string expressions:

#!/bin/bash

test-string: evaluate the value of a string

ANSWER=maybe

if [-z "$ANSWER"]; then
echo "There is no answer." >&2
exit 1

fi

if ["$ANSWER" = "yes"]; then
echo "The answer is YES."

elif ["$ANSWER" = "no"]; then
echo "The answer is NO."

elif ["$ANSWER" = "maybe"]; then
echo "The answer is MAYBE."

else
echo "The answer is UNKNOWN."

fi

In this script, we evaluate the constant ANSWER. We first determine whether the string is
empty. If it is, we terminate the script and set the exit status to 1. Notice the redirection
that is applied to the echo command. This redirects the error message “There is no an-
swer.” to standard error, which is the proper thing to do with error messages. If the string
is not empty, we evaluate the value of the string to see whether it is equal to either “yes,”
“no,” or “maybe.” We do this by using elif, which is short for “else if.” By using
elif, we are able to construct a more complex logical test.

Integer Expressions

To compare values as integers rather than as strings, we can use the expressions listed in

400

test

Table 27-3.

Table 27-3: test Integer Expressions

Expression Is True If...

integer1 -eq integer2 integer1 is equal to integer2.

integer1 -ne integer2 integer1 is not equal to integer2.

integer1 -le integer2 integer1 is less than or equal to integer2.

integer1 -lt integer2 integer1 is less than integer2.

integer1 -ge integer2 integer1 is greater than or equal to integer2.

integer1 -gt integer2 integer1 is greater than integer2.

Here is a script that demonstrates them:

#!/bin/bash

test-integer: evaluate the value of an integer.

INT=-5

if [-z "$INT"]; then
echo "INT is empty." >&2
exit 1

fi

if ["$INT" -eq 0]; then
echo "INT is zero."

else
if ["$INT" -lt 0]; then

echo "INT is negative."
else

echo "INT is positive."
fi
if [$((INT % 2)) -eq 0]; then

echo "INT is even."
else

echo "INT is odd."
fi

fi

401

27 – Flow Control: Branching with if

The interesting part of the script is how it determines whether an integer is even or odd.
By performing a modulo 2 operation on the number, which divides the number by two
and returns the remainder, it can tell whether the number is odd or even.

A More Modern Version of test

Modern versions of bash include a compound command that acts as an enhanced re-
placement for test. It uses the following syntax:

[[expression]]

where, like test, expression is an expression that evaluates to either a true or false re-
sult. The [[]] command is similar to test (it supports all of its expressions), but adds
an important new string expression.

string1 =~ regex

This returns true if string1 is matched by the extended regular expression regex. This
opens up a lot of possibilities for performing such tasks as data validation. In our earlier
example of the integer expressions, the script would fail if the constant INT contained
anything except an integer. The script needs a way to verify that the constant contains an
integer. Using [[]] with the =~ string expression operator, we could improve the
script this way:

#!/bin/bash

test-integer2: evaluate the value of an integer.

INT=-5

if [["$INT" =~ ^-?[0-9]+$]]; then
if ["$INT" -eq 0]; then

echo "INT is zero."
else

if ["$INT" -lt 0]; then
echo "INT is negative."

else
echo "INT is positive."

fi
if [$((INT % 2)) -eq 0]; then

echo "INT is even."
else

echo "INT is odd."
fi

402

A More Modern Version of test

fi
else

echo "INT is not an integer." >&2
exit 1

fi

By applying the regular expression, we are able to limit the value of INT to only strings
that begin with an optional minus sign, followed by one or more numerals. This expres-
sion also eliminates the possibility of empty values.

Another added feature of [[]] is that the == operator supports pattern matching the
same way pathname expansion does. Here’s an example:

[me@linuxbox ~]$ FILE=foo.bar
[me@linuxbox ~]$ if [[$FILE == foo.*]]; then
> echo "$FILE matches pattern 'foo.*'"
> fi
foo.bar matches pattern 'foo.*'

This makes [[]] useful for evaluating file and pathnames.

(()) - Designed for Integers

In addition to the [[]] compound command, bash also provides the (()) com-
pound command, which is useful for operating on integers. It supports a full set of arith-
metic evaluations, a subject we will cover fully in Chapter 34, “Strings and Numbers.”

(()) is used to perform arithmetic truth tests. An arithmetic truth test results in true if
the result of the arithmetic evaluation is non-zero.

[me@linuxbox ~]$ if ((1)); then echo "It is true."; fi
It is true.
[me@linuxbox ~]$ if ((0)); then echo "It is true."; fi
[me@linuxbox ~]$

Using (()), we can slightly simplify the test-integer2 script like this:

#!/bin/bash

403

27 – Flow Control: Branching with if

test-integer2a: evaluate the value of an integer.

INT=-5

if [["$INT" =~ ^-?[0-9]+$]]; then
if ((INT == 0)); then

echo "INT is zero."
else

if ((INT < 0)); then
echo "INT is negative."

else
echo "INT is positive."

fi
if ((((INT % 2)) == 0)); then

echo "INT is even."
else

echo "INT is odd."
fi

fi
else

echo "INT is not an integer." >&2
exit 1

fi

Notice that we use less-than and greater-than signs and that == is used to test for equiva-
lence. This is a more natural-looking syntax for working with integers. Notice too, that
because the compound command (()) is part of the shell syntax rather than an ordi-
nary command, and it deals only with integers, it is able to recognize variables by name
and does not require expansion to be performed. We’ll discuss (()) and the related
arithmetic expansion further in Chapter 34.

Combining Expressions

It’s also possible to combine expressions to create more complex evaluations. Expres-
sions are combined by using logical operators. We saw these in Chapter 17, “Searching
for Files,” when we learned about the find command. There are three logical operations
for test and [[]]. They are AND, OR and NOT. test and [[]] use different op-
erators to represent these operations :

Table 27-4: Logical Operators

Operation test [[]] and (())

404

Combining Expressions

AND -a &&

OR -o ||

NOT ! !

Here’s an example of an AND operation. The following script determines whether an in-
teger is within a range of values:

#!/bin/bash

test-integer3: determine if an integer is within a
specified range of values.

MIN_VAL=1
MAX_VAL=100

INT=50

if [["$INT" =~ ^-?[0-9]+$]]; then
if [["$INT" -ge "$MIN_VAL" && "$INT" -le "$MAX_VAL"]]; then

echo "$INT is within $MIN_VAL to $MAX_VAL."
else

echo "$INT is out of range."
fi

else
 echo "INT is not an integer." >&2
 exit 1
fi

In this script, we determine whether the value of integer INT lies between the values of
MIN_VAL and MAX_VAL. This is performed by a single use of [[]], which includes
two expressions separated by the && operator. We could have also coded this using
test:

 if ["$INT" -ge "$MIN_VAL" -a "$INT" -le "$MAX_VAL"]; then
echo "$INT is within $MIN_VAL to $MAX_VAL."

else
echo "$INT is out of range."

fi

405

27 – Flow Control: Branching with if

The ! negation operator reverses the outcome of an expression. It returns true if an ex-
pression is false, and it returns false if an expression is true. In the following script, we
modify the logic of our evaluation to find values of INT that are outside the specified
range:

#!/bin/bash

test-integer4: determine if an integer is outside a
specified range of values.

MIN_VAL=1
MAX_VAL=100

INT=50

if [["$INT" =~ ^-?[0-9]+$]]; then
if [[! ("$INT" -ge "$MIN_VAL" && "$INT" -le "$MAX_VAL")]]; then

echo "$INT is outside $MIN_VAL to $MAX_VAL."
else

echo "$INT is in range."
fi

else
 echo "INT is not an integer." >&2
 exit 1
fi

We also include parentheses around the expression, for grouping. If these were not in-
cluded, the negation would only apply to the first expression and not the combination of
the two. Coding this with test would be done this way:

if [! \("$INT" -ge "$MIN_VAL" -a "$INT" -le "$MAX_VAL" \)];
then

echo "$INT is outside $MIN_VAL to $MAX_VAL."
else

echo "$INT is in range."
fi

Since all expressions and operators used by test are treated as command arguments by
the shell (unlike [[]] and (())), characters that have special meaning to bash,
such as <, >, (, and), must be quoted or escaped.

406

Combining Expressions

Seeing that test and [[]] do roughly the same thing, which is preferable? test is
traditional (and part of the POSIX specification for standard shells, which are often used
to run system startup scripts), whereas [[]] is specific to bash (and a few other mod-
ern shells). It’s important to know how to use test since it is widely used, but [[]] is
clearly more useful and is easier to code, so it is preferred for modern scripts.

Portability is the Hobgoblin of Little Minds

If you talk to “real” Unix people, you quickly discover that many of them don’t
like Linux very much. They regard it as impure and unclean. One tenet of Unix
users is that everything should be “portable.” This means that any script you write
should be able to run, unchanged, on any Unix-like system.

Unix people have good reason to believe this. Having seen what proprietary ex-
tensions to commands and shells did to the Unix world before POSIX, they are
naturally wary of the effect of Linux on their beloved OS.

But portability has a serious downside. It prevents progress. It requires that things
are always done using “lowest common denominator” techniques. In the case of
shell programming, it means making everything compatible with sh, the original
Bourne shell.

This downside is the excuse that proprietary software vendors use to justify their
proprietary extensions, only they call them “innovations.” But they are really just
lock-in devices for their customers.

The GNU tools, such as bash, have no such restrictions. They encourage porta-
bility by supporting standards and by being universally available. You can install
bash and the other GNU tools on almost any kind of system, even Windows,
without cost. So feel free to use all the features of bash. It’s really portable.

Control Operators: Another Way to Branch

bash provides two control operators that can perform branching. The && (AND) and ||
(OR) operators work like the logical operators in the [[]] compound command. Here
is the syntax for &&:

command1 && command2

and here is the syntax for ||:

command1 || command2

It is important to understand the behavior of these. With the && operator, command1 is

407

27 – Flow Control: Branching with if

executed and command2 is executed if, and only if, command1 is successful. With the ||
operator, command1 is executed and command2 is executed if, and only if, command1 is
unsuccessful.

In practical terms, it means that we can do something like this:

[me@linuxbox ~]$ mkdir temp && cd temp

This will create a directory named temp, and if it succeeds, the current working directory
will be changed to temp. The second command is attempted only if the mkdir com-
mand is successful. Likewise, a command like this:

[me@linuxbox ~]$ [[-d temp]] || mkdir temp

will test for the existence of the directory temp, and only if the test fails will the direc-
tory be created. This type of construct is handy for handling errors in scripts, a subject we
will discuss more in later chapters. For example, we could do this in a script:

[-d temp] || exit 1

If the script requires the directory temp and it does not exist, then the script will termi-
nate with an exit status of 1.

Summing Up

We started this chapter with a question. How could we make our sys_info_page
script detect whether the user had permission to read all the home directories? With our
knowledge of if, we can solve the problem by adding this code to the
report_home_space function:

report_home_space () {
if [["$(id -u)" -eq 0]]; then

cat <<- _EOF_
<h2>Home Space Utilization (All Users)</h2>
<pre>$(du -sh /home/*)</pre>
EOF

else
cat <<- _EOF_

408

Summing Up

<h2>Home Space Utilization ($USER)</h2>
<pre>$(du -sh $HOME)</pre>
EOF

fi
return

}

We evaluate the output of the id command. With the -u option, id outputs the numeric
user ID number of the effective user. The superuser is always ID zero and every other
user is a number greater than zero. Knowing this, we can construct two different here
documents, one taking advantage of superuser privileges, and the other restricted to the
user’s own home directory.

We are going to take a break from the sys_info_page program, but don’t worry. It
will be back. In the meantime, we’ll cover some topics that we’ll need when we resume
our work.

Further Reading

There are several sections of the bash man page that provide further detail on the topics
covered in this chapter:

● Lists (covers the control operators || and &&)

● Compound Commands (covers [[]], (()) and if)

● CONDITIONAL EXPRESSIONS

● SHELL BUILTIN COMMANDS (covers test)

Further, the Wikipedia has a good article on the concept of pseudocode:

http://en.wikipedia.org/wiki/Pseudocode

409

http://en.wikipedia.org/wiki/Pseudocode

