26 — Top-Down Design

26 - Top-Down Design

As programs get larger and more complex, they become more difficult to design, code,
and maintain. As with any large project, it is often a good idea to break large, complex
tasks into a series of small, simple tasks. Let’s imagine that we are trying to describe a
common, everyday task, going to the market to buy food, to a person from Mars. We
might describe the overall process as the following series of steps:

1. Getin car.
Drive to market.
Park car.
Enter market.
Purchase food.
Return to car.
Drive home.

© N A WN

Park car.
9. Enter house.

However, a person from Mars is likely to need more detail. We could further break down
the subtask “Park car” into this series of steps:

1. Find parking space.

2. Drive car into space.
3. Turn off motor.

4. Set parking brake.

5. Exit car.

6. Lock car.

The “Turn off motor” subtask could further be broken down into steps including “Turn
off ignition,” “Remove ignition key,” and so on, until every step of the entire process of
going to the market has been fully defined.

This process of identifying the top-level steps and developing increasingly detailed views
of those steps is called top-down design. This technique allows us to break large complex
tasks into many small, simple tasks. Top-down design is a common method of designing

383

26 — Top-Down Design

programs and one that is well suited to shell programming in particular.

In this chapter, we will use top-down design to further develop our report-generator
script.

Shell Functions

Our script currently performs the following steps to generate the HTML document:
Open page.

Open page header.

Set page title.

Close page header.

Open page body.

Output page heading.

Output timestamp.

© N A WwWN =

Close page body.
Close page.

©

For our next stage of development, we will add some tasks between steps 7 and 8. These
will includethe following:

e System uptime and load. This is the amount of time since the last shutdown or re-
boot and the average number of tasks currently running on the processor over sev-
eral time intervals.

e Disk space. This is the overall use of space on the system’s storage devices.

e Home space. This is the amount of storage space being used by each user.

If we had a command for each of these tasks, we could add them to our script simply
through command substitution.

#!/bin/bash

Program to output a system information page
TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME="$(date +"%x %r %z")"
TIMESTAMP="Generated $CURRENT_TIME, by $USER"

cat << _EOF_
<html>

384

Shell Functions

<head>
<title>$TITLE</title>
</head>
<body>
<h1>$TITLE</h1>
<p>$TIMESTAMP</p>
$(report_uptime)
$(report_disk_space)
$(report_home_space)
</body>
</html>
EOF

We could create these additional commands in two ways. We could write three separate
scripts and place them in a directory listed in our PATH, or we could embed the scripts
within our program as shell functions. As we have mentioned, shell functions are “mini-
scripts” that are located inside other scripts and can act as autonomous programs. Shell
functions have two syntactic forms. First, here is the more formal form:

function name {

commands
return
}
Here is a simpler (and generally preferred) form:
name () {
commands
return
}

where name is the name of the function and commands is a series of commands contained
within the function. Both forms are equivalent and may be used interchangeably. The fol-
lowing is a script that demonstrates the use of a shell function:

#!/bin/bash

Shell function demo

echo "Step 2"
return

1

2

3

4

5 function step2 {
6

7

8 }

9

385

26 — Top-Down Design

10 # Main program starts here
11

12 echo "Step 1"

13 step2

14 echo "Step 3"

As the shell reads the script, it passes over lines 1 through 11 because those lines consist
of comments and the function definition. Execution begins at line 12, with an echo com-
mand. Line 13 calls the shell function step2 and the shell executes the function just as
it would any other command. Program control then moves to line 6, and the second echo
command is executed. Line 7 is executed next. Its return command terminates the
function and returns control to the program at the line following the function call (line
14), and the final echo command is executed. Note that for function calls to be recog-

nized as shell functions and not interpreted as the names of external programs, shell func-
tion definitions must appear in the script before they are called.

We’ll add minimal shell function definitions to our script, shown here:

#!/bin/bash
Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME="$(date +"%x %r %zZ")"
TIMESTAMP="Generated $CURRENT_TIME, by $USER"

report_uptime () {
return

}

report_disk space () {
return

}

report_home_space () {
return

}

cat << _EOF_
<html>
<head>
<title>$TITLE</title>

386

Shell Functions

</head>
<body>
<h1>$TITLE</h1>
<p>$TIMESTAMP</p>
$(report_uptime)
$(report_disk_space)
$(report_home_space)
</body>
</html>
EOF

Shell function names follow the same rules as variables. A function must contain at least
one command. The return command (which is optional) satisfies the requirement.

Local Variables

In the scripts we have written so far, all the variables (including constants) have been
global variables. Global variables maintain their existence throughout the program. This
is fine for many things, but it can sometimes complicate the use of shell functions. Inside
shell functions, it is often desirable to have local variables. Local variables are only ac-
cessible within the shell function in which they are defined and cease to exist once the
shell function terminates.

Having local variables allows the programmer to use variables with names that may al-
ready exist, either in the script globally or in other shell functions, without having to
worry about potential name conflicts.

Here is an example script that demonstrates how local variables are defined and used:

#!/bin/bash
local-vars: script to demonstrate local variables
f00=0 # global variable foo
funct_1 () {
local foo # variable foo local to funct_1

foo=1
echo "funct_1: foo = $foo"

387

26 — Top-Down Design

funct_2 () {

local foo # variable foo local to funct_2

foo=2

echo "funct_2: foo = $foo"
}
echo "global: foo = $foo"
funct_1
echo "global: foo = $foo"
funct_2
echo "global: foo = $foo"

As we can see, local variables are defined by preceding the variable name with the word
local. This creates a variable that is local to the shell function in which it is defined.
Once outside the shell function, the variable no longer exists. When we run this script, we
see these results:

[me@linuxbox ~]$ local-vars
global: foo = 0

funct_1: foo = 1
global: foo = 0
funct_2: foo = 2
global: foo = 0

We see that the assignment of values to the local variable fo0 within both shell functions
has no effect on the value of 00 defined outside the functions.

This feature allows shell functions to be written so that they remain independent of each
other and of the script in which they appear. This is valuable, because it helps prevent one
part of a program from interfering with another. It also allows shell functions to be writ-
ten so that they can be portable. That is, they may be cut and pasted from script to script,
as needed.

Keep Scripts Running

While developing our program, it is useful to keep the program in a runnable state. By
doing this, and testing frequently, we can detect errors early in the development process.
This will make debugging problems much easier. For example, if we run the program,
make a small change, then run the program again and find a problem, it’s likely that the
most recent change is the source of the problem. By adding the empty functions, called

388

Keep Scripts Running

stubs in programmer-speak, we can verify the logical flow of our program at an early
stage. When constructing a stub, it’s a good idea to include something that provides feed-
back to the programmer, which shows the logical flow is being carried out. If we look at
the output of our script now:

[me@linuxbox ~]$ sys_info_page
<html>
<head>
<title>System Information Report For twin2</title>
</head>
<body>
<h1>System Information Report For linuxbox</hi1>
<p>Generated 03/19/2009 04:02:10 PM EDT, by me</p>
</body>
</html>

we see that there are some blank lines in our output after the timestamp, but we can’t be
sure of the cause. If we change the functions to include some feedback:

report_uptime () {
echo "Function report_uptime executed."
return

b

report_disk_space () {
echo "Function report_disk space executed."
return

b

report_home_space () {
echo "Function report_home_space executed."
return

and run the script again:

[me@linuxbox ~]$ sys_info_page

389

26 — Top-Down Design

<html>
<head>
<title>System Information Report For linuxbox</title>
</head>
<body>
<h1>System Information Report For linuxbox</hi1>
<p>Generated 03/20/2009 05:17:26 AM EDT, by me</p>
Function report_uptime executed.
Function report_disk_space executed.
Function report_home_space executed.
</body>
</html>

we now see that, in fact, our three functions are being executed.

With our function framework in place and working, it’s time to flesh out some of the
function code. First, here’s the report_uptime function:

report_uptime () {
cat <<- _EOF_
<h2>System Uptime</h2>
<pre>$(uptime)</pre>
_EOF _
return

It’s pretty straightforward. We use a here document to output a section header and the
output of the uptime command, surrounded by <pre> tags to preserve the formatting
of the command. The report_disk_space function is similar.

report_disk_space () {
cat <<- _EOF_
<h2>Disk Space Utilization</h2>
<pre>$(df -h)</pre>
EOF
return

This function uses the df -h command to determine the amount of disk space. Lastly,
we’ll build the report_home_space function.

390

Keep Scripts Running

report_home_space () {
cat <<- _EOF_
<h2>Home Space Utilization</h2>
<pre>$(du -sh /home/*)</pre>
_EOF _
return

We use the du command with the - sh options to perform this task. This, however, is not
a complete solution to the problem. While it will work on some systems (Ubuntu, for ex-
ample), it will not work on others. The reason is that many systems set the permissions of
home directories to prevent them from being world-readable, which is a reasonable secu-
rity measure. On these systems, the report_home_space function, as written, will
work only if our script is run with superuser privileges. A better solution would be to
have the script adjust its behavior according to the privileges of the user. We will take this
up in the next chapter.

Shell Functions In Your .bashrc File

Shell functions make excellent replacements for aliases, and are actually the pre-
ferred method of creating small commands for personal use. Aliases are limited in
the kind of commands and shell features they support, whereas shell functions al-
low anything that can be scripted. For example, if we liked the
report_disk_space shell function that we developed for our script, we
could create a similar function named ds for our .bashrc file:

ds () {
echo “Disk Space Utilization For $HOSTNAME”

df -h

Summing Up

In this chapter, we have introduced a common method of program design called top-
down design, and we saw how shell functions are used to build the stepwise refinement
that it requires. We also saw how local variables can be used to make shell functions in-
dependent from one another and from the program in which they are placed. This makes
it possible for shell functions to be written in a portable manner and to be reusable by al-
lowing them to be placed in multiple programs; this is a great time saver.

391

26 — Top-Down Design

Further Reading

e The Wikipedia has many articles on software design philosophy. Here are a cou-
ple of good ones:

http://en.wikipedia.org/wiki/Top-down_design
http://en.wikipedia.org/wiki/Subroutines

392

http://en.wikipedia.org/wiki/Subroutines
http://en.wikipedia.org/wiki/Top-down_design

