
25 – Starting a Project

25 – Starting a Project

Starting with this chapter, we will begin to build a program. The purpose of this project is
to see how various shell features are used to create programs and, more importantly, cre-
ate good programs.

The program we will write is a report generator. It will present various statistics about
our system and its status and will produce this report in HTML format, so we can view it
with a web browser such as Firefox or Chrome.

Programs are usually built up in a series of stages, with each stage adding features and
capabilities. The first stage of our program will produce a minimal HTML document that
contains no system information. That will come later.

First Stage: Minimal Document

The first thing we need to know is the format of a well-formed HTML document. It looks
like this:

<html>
<head>

<title>Page Title</title>
</head>
<body>

Page body.
</body>

</html>

If we enter this into our text editor and save the file as foo.html, we can use the fol-
lowing URL in Firefox to view the file:

file:///home/username/foo.html

The first stage of our program will be able to output this HTML file to standard output.
We can write a program to do this pretty easily. Let’s start our text editor and create a new
file named ~/bin/sys_info_page.

371

25 – Starting a Project

[me@linuxbox ~]$ vim ~/bin/sys_info_page

Enter the following program:

#!/bin/bash

Program to output a system information page

echo "<html>"
echo " <head>"
echo " <title>Page Title</title>"
echo " </head>"
echo " <body>"
echo " Page body."
echo " </body>"
echo "</html>"

Our first attempt at this problem contains a shebang, a comment (always a good idea),
and a sequence of echo commands, one for each line of output. After saving the file,
we’ll make it executable and attempt to run it.

[me@linuxbox ~]$ chmod 755 ~/bin/sys_info_page
[me@linuxbox ~]$ sys_info_page

When the program runs, we should see the text of the HTML document displayed on the
screen, since the echo commands in the script send their output to standard output. We’ll
run the program again and redirect the output of the program to the file
sys_info_page.html so that we can view the result with a web browser.

[me@linuxbox ~]$ sys_info_page > sys_info_page.html
[me@linuxbox ~]$ firefox sys_info_page.html

So far, so good.

When writing programs, it’s always a good idea to strive for simplicity and clarity. Main-
tenance is easier when a program is easy to read and understand, not to mention that it
can make the program easier to write by reducing the amount of typing. Our current ver-
sion of the program works fine, but it could be simpler. We could actually combine all the
echo commands into one, which will certainly make it easier to add more lines to the pro-

372

First Stage: Minimal Document

gram’s output. So, let’s change our program to this:

#!/bin/bash

Program to output a system information page

echo "<html>
<head>

<title>Page Title</title>
</head>
<body>

Page body.
</body>

</html>"

A quoted string may include newlines, and therefore contain multiple lines of text. The
shell will keep reading the text until it encounters the closing quotation mark. It works
this way on the command line, too:

[me@linuxbox ~]$ echo "<html>
> <head>
> <title>Page Title</title>
> </head>
> <body>
> Page body.
> </body>
> </html>"

The leading “>” character is the shell prompt contained in the PS2 shell variable. It ap-
pears whenever we type a multiline statement into the shell. This feature is a little ob-
scure right now, but later, when we cover multiline programming statements, it will turn
out to be quite handy.

Second Stage: Adding a Little Data

Now that our program can generate a minimal document, let’s put some data in the re-
port. To do this, we will make the following changes:

#!/bin/bash

373

25 – Starting a Project

Program to output a system information page

echo "<html>
 <head>
 <title>System Information Report</title>
 </head>
 <body>
 <h1>System Information Report</h1>
 </body>
</html>"

We added a page title and a heading to the body of the report.

Variables and Constants

There is an issue with our script, however. Notice how the string “System Information
Report” is repeated? With our tiny script it’s not a problem, but let’s imagine that our
script was really long and we had multiple instances of this string. If we wanted to
change the title to something else, we would have to change it in multiple places, which
could be a lot of work. What if we could arrange the script so that the string appeared
only once and not multiple times? That would make future maintenance of the script
much easier. Here’s how we could do that:

#!/bin/bash

Program to output a system information page

title="System Information Report"

echo "<html>
 <head>
 <title>$title</title>
 </head>
 <body>
 <h1>$title</h1>
 </body>
</html>"

By creating a variable named title and assigning it the value System Informa-
tion Report, we can take advantage of parameter expansion and place the string in
multiple locations.

374

Variables and Constants

So, how do we create a variable? Simple, we just use it. When the shell encounters a vari-
able, it automatically creates it. This differs from many programming languages in which
variables must be explicitly declared or defined before use. The shell is very lax about
this, which can lead to some problems. For example, consider this scenario played out on
the command line:

[me@linuxbox ~]$ foo="yes"
[me@linuxbox ~]$ echo $foo
yes
[me@linuxbox ~]$ echo $fool

[me@linuxbox ~]$

We first assign the value yes to the variable foo, and then we display its value with
echo. Next we display the value of the variable name misspelled as fool and get a
blank result. This is because the shell happily created the variable fool when it encoun-
tered it and gave it the default value of nothing, or empty. From this, we learn that we
must pay close attention to our spelling! It’s also important to understand what really hap-
pened in this example. From our previous look at how the shell performs expansions, we
know that the following command:

[me@linuxbox ~]$ echo $foo

undergoes parameter expansion and results in the following:

[me@linuxbox ~]$ echo yes

By contrast, the following command:

[me@linuxbox ~]$ echo $fool

expands into this:

[me@linuxbox ~]$ echo

The empty variable expands into nothing! This can play havoc with commands that re-
quire arguments. Here’s an example:

375

25 – Starting a Project

[me@linuxbox ~]$ foo=foo.txt
[me@linuxbox ~]$ foo1=foo1.txt
[me@linuxbox ~]$ cp $foo $fool
cp: missing destination file operand after `foo.txt'
Try `cp --help' for more information.

We assign values to two variables, foo and foo1. We then perform a cp but misspell
the name of the second argument. After expansion, the cp command is sent only one ar-
gument, though it requires two.

There are some rules about variable names:

1. Variable names may consist of alphanumeric characters (letters and numbers) and
underscore characters.

2. The first character of a variable name must be either a letter or an underscore.

3. Spaces and punctuation symbols are not allowed.

The word “variable” implies a value that changes, and in many applications, variables are
used this way. However, the variable in our application, title, is used as a constant. A
constant is just like a variable in that it has a name and contains a value. The difference is
that the value of a constant does not change. In an application that performs geometric
calculations, we might define PI as a constant and assign it the value of 3.1415, instead
of using the number literally throughout our program. The shell makes no distinction be-
tween variables and constants; they are mostly for the programmer’s convenience. A
common convention is to use uppercase letters to designate constants and lowercase let-
ters for true variables. We will modify our script to comply with this convention:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"

echo "<html>
 <head>
 <title>$TITLE</title>
 </head>
 <body>
 <h1>$TITLE</h1>
 </body>
</html>"

376

Variables and Constants

We also took the opportunity to jazz up our title by adding the value of the shell variable
HOSTNAME. This is the network name of the machine.

Note: The shell actually does provide a way to enforce the immutability of con-
stants, through the use of the declare builtin command with the -r (read-
only) option. Had we assigned TITLE this way:

declare -r TITLE="Page Title"

the shell would prevent any subsequent assignment to TITLE. This feature is
rarely used, but it exists for very formal scripts.

Assigning Values to Variables and Constants

Here is where our knowledge of expansion really starts to pay off. As we have seen, vari-
ables are assigned values this way:

variable=value

where variable is the name of the variable and value is a string. Unlike some other pro-
gramming languages, the shell does not care about the type of data assigned to a variable;
it treats them all as strings. You can force the shell to restrict the assignment to integers
by using the declare command with the -i option, but, like setting variables as read-
only, this is rarely done.

Note that in an assignment, there must be no spaces between the variable name, the equal
sign, and the value. So what can the value consist of? I can have anything that we can ex-
pand into a string.

a=z # Assign the string "z" to variable a.
b="a string" # Embedded spaces must be within quotes.
c="a string and $b" # Other expansions such as variables can be

expanded into the assignment.
d="$(ls -l foo.txt)" # Results of a command.
e=$((5 * 7)) # Arithmetic expansion.
f="\t\ta string\n" # Escape sequences such as tabs and newlines.

Multiple variable assignments may be done on a single line.

a=5 b="a string"

377

25 – Starting a Project

During expansion, variable names may be surrounded by optional curly braces, {}. This
is useful in cases where a variable name becomes ambiguous because of its surrounding
context. Here, we try to change the name of a file from myfile to myfile1, using a
variable:

[me@linuxbox ~]$ filename="myfile"
[me@linuxbox ~]$ touch "$filename"
[me@linuxbox ~]$ mv "$filename" "$filename1"
mv: missing destination file operand after `myfile'
Try `mv --help' for more information.

This attempt fails because the shell interprets the second argument of the mv command as
a new (and empty) variable. The problem can be overcome this way:

[me@linuxbox ~]$ mv "$filename" "${filename}1"

By adding the surrounding braces, the shell no longer interprets the trailing 1 as part of
the variable name.

Note: It's good practice is to enclose variables and command substitutions in
double quotes to limit the effects of word-splitting by the shell. Quoting is espe-
cially important when a variable might contain a filename.

We’ll take this opportunity to add some data to our report, namely the date and time the
report was created and the username of the creator.

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME="$(date +"%x %r %Z")"
TIMESTAMP="Generated $CURRENT_TIME, by $USER"

echo "<html>
 <head>
 <title>$TITLE</title>
 </head>
 <body>

378

Variables and Constants

 <h1>$TITLE</h1>
 <p>$TIMESTAMP</p>
 </body>
</html>"

Here Documents

We’ve looked at two different methods of outputting our text, both using the echo com-
mand. There is a third way called a here document or here script. A here document is an
additional form of I/O redirection in which we embed a body of text into our script and
feed it into the standard input of a command. It works like this:

command << token

text

token

where command is the name of command that accepts standard input and token is a string
used to indicate the end of the embedded text. Here we’ll modify our script to use a here
document:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME="$(date +"%x %r %Z")"
TIMESTAMP="Generated $CURRENT_TIME, by $USER"

cat << _EOF_
<html>
 <head>
 <title>$TITLE</title>
 </head>
 <body>
 <h1>$TITLE</h1>
 <p>$TIMESTAMP</p>
 </body>
</html>
EOF

Instead of using echo, our script now uses cat and a here document. The string _EOF_

379

25 – Starting a Project

(meaning End Of File, a common convention) was selected as the token and marks the
end of the embedded text. Note that the token must appear alone and that there must not
be trailing spaces on the line.

So, what’s the advantage of using a here document? It’s mostly the same as echo, except
that, by default, single and double quotes within here documents lose their special mean-
ing to the shell. Here is a command line example:

[me@linuxbox ~]$ foo="some text"
[me@linuxbox ~]$ cat << _EOF_
> $foo
> "$foo"
> '$foo'
> \$foo
> _EOF_
some text
"some text"
'some text'
$foo

As we can see, the shell pays no attention to the quotation marks. It treats them as ordi-
nary characters. This allows us to embed quotes freely within a here document. This
could turn out to be handy for our report program.

Here documents can be used with any command that accepts standard input. In this ex-
ample, we use a here document to pass a series of commands to the ftp program to re-
trieve a file from a remote FTP server:

#!/bin/bash

Script to retrieve a file via FTP

FTP_SERVER=ftp.nl.debian.org
FTP_PATH=/debian/dists/stretch/main/installer-amd64/current/images/
cdrom REMOTE_FILE=debian-cd_info.tar.gz

ftp -n << _EOF_
open $FTP_SERVER
user anonymous me@linuxbox
cd $FTP_PATH
hash
get $REMOTE_FILE

380

Here Documents

bye
EOF
ls -l "$REMOTE_FILE"

If we change the redirection operator from << to <<-, the shell will ignore leading tab
characters (but not spaces) in the here document. This allows a here document to be in-
dented, which can improve readability.

#!/bin/bash

Script to retrieve a file via FTP

FTP_SERVER=ftp.nl.debian.org
FTP_PATH=/debian/dists/stretch/main/installer-amd64/current/images/
cdrom REMOTE_FILE=debian-cd_info.tar.gz

ftp -n <<- _EOF_
open $FTP_SERVER
user anonymous me@linuxbox
cd $FTP_PATH
hash
get $REMOTE_FILE
bye
EOF

ls -l "$REMOTE_FILE"

This feature can be somewhat problematic, because many text editors (and programmers
themselves) will prefer to use spaces instead of tabs to achieve indentation in their
scripts.

Summing Up

In this chapter, we started a project that will carry us through the process of building a
successful script. We introduced the concept of variables and constants and how they can
be employed. They are the first of many applications we will find for parameter expan-
sion. We also looked at how to produce output from our script and various methods for
embedding blocks of text.

381

25 – Starting a Project

Further Reading

● For more information about HTML, see the following articles and tutorials:
http://en.wikipedia.org/wiki/Html
http://en.wikibooks.org/wiki/HTML_Programming
http://html.net/tutorials/html/

● The bash man page includes a section entitled “HERE DOCUMENTS,” which
has a full description of this feature.

382

http://html.net/tutorials/html/
http://en.wikibooks.org/wiki/HTML_Programming
http://en.wikipedia.org/wiki/Html

