
24 – Writing Your First Script

24 – Writing Your First Script

In the preceding chapters, we have assembled an arsenal of command line tools. While
these tools can solve many kinds of computing problems, we are still limited to manually
using them one by one on the command line. Wouldn’t it be great if we could get the
shell to do more of the work? We can. By joining our tools together into programs of our
own design, the shell can carry out complex sequences of tasks all by itself. We can en-
able it to do this by writing shell scripts.

What are Shell Scripts?

In the simplest terms, a shell script is a file containing a series of commands. The shell
reads this file and carries out the commands as though they have been entered directly on
the command line.

The shell is somewhat unique, in that it is both a powerful command line interface to the
system and a scripting language interpreter. As we will see, most of the things that can be
done on the command line can be done in scripts, and most of the things that can be done
in scripts can be done on the command line.

We have covered many shell features, but we have focused on those features most often
used directly on the command line. The shell also provides a set of features usually (but
not always) used when writing programs.

How to Write a Shell Script

To successfully create and run a shell script, we need to do three things.

1. Write a script. Shell scripts are ordinary text files. So, we need a text editor to
write them. The best text editors will provide syntax highlighting, allowing us to
see a color-coded view of the elements of the script. Syntax highlighting will help
us spot certain kinds of common errors. vim, gedit, kate, and many other edi-
tors are good candidates for writing scripts.

2. Make the script executable. The system is rather fussy about not letting any old
text file be treated as a program, and for good reason! We need to set the script
file’s permissions to allow execution.

364

How to Write a Shell Script

3. Put the script somewhere the shell can find it. The shell automatically searches
certain directories for executable files when no explicit pathname is specified. For
maximum convenience, we will place our scripts in these directories.

Script File Format

In keeping with programming tradition, we’ll create a “Hello World” program to demon-
strate an extremely simple script. Let’s fire up our text editors and enter the following
script:

#!/bin/bash

This is our first script.

echo 'Hello World!'

The last line of our script is pretty familiar; it’s just an echo command with a string ar-
gument. The second line is also familiar. It looks like a comment that we have seen used
in many of the configuration files we have examined and edited. One thing about com-
ments in shell scripts is that they may also appear at the ends of lines, provided they are
preceded with at least one whitespace character, like so:

echo 'Hello World!' # This is a comment too

Everything from the # symbol onward on the line is ignored.

Like many things, this works on the command line, too:

[me@linuxbox ~]$ echo 'Hello World!' # This is a comment too
Hello World!

Though comments are of little use on the command line, they will work.

The first line of our script is a little mysterious. It looks as if it should be a comment since
it starts with #, but it looks too purposeful to be just that. The #! character sequence is,
in fact, a special construct called a shebang. The shebang is used to tell the kernel the
name of the interpreter that should be used to execute the script that follows. Every shell
script should include this as its first line.

Let’s save our script file as hello_world.

365

24 – Writing Your First Script

Executable Permissions

The next thing we have to do is make our script executable. This is easily done using
chmod.

[me@linuxbox ~]$ ls -l hello_world
-rw-r--r-- 1 me me 63 2009-03-07 10:10 hello_world
[me@linuxbox ~]$ chmod 755 hello_world
[me@linuxbox ~]$ ls -l hello_world
-rwxr-xr-x 1 me me 63 2009-03-07 10:10 hello_world

There are two common permission settings for scripts: 755 for scripts that everyone can
execute, and 700 for scripts that only the owner can execute. Note that scripts must be
readable to be executed.

Script File Location

With the permissions set, we can now execute our script:

[me@linuxbox ~]$./hello_world
Hello World!

For the script to run, we must precede the script name with an explicit path. If we don’t,
we get this:

[me@linuxbox ~]$ hello_world
bash: hello_world: command not found

Why is this? What makes our script different from other programs? As it turns out, noth-
ing. Our script is fine. Its location is the problem. In Chapter 11, we discussed the PATH
environment variable and its effect on how the system searches for executable programs.
To recap, the system searches a list of directories each time it needs to find an executable
program, if no explicit path is specified. This is how the system knows to execute /bin/
ls when we type ls at the command line. The /bin directory is one of the directories
that the system automatically searches. The list of directories is held within an environ-
ment variable named PATH. The PATH variable contains a colon-separated list of directo-
ries to be searched. We can view the contents of PATH.

366

Script File Location

[me@linuxbox ~]$ echo $PATH
/home/me/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:
/bin:/usr/games

Here we see our list of directories. If our script were located in any of the directories in
the list, our problem would be solved. Notice the first directory in the list, /home/me/
bin. Most Linux distributions configure the PATH variable to contain a bin directory in
the user’s home directory to allow users to execute their own programs. So, if we create
the bin directory and place our script within it, it should start to work like other pro-
grams.

[me@linuxbox ~]$ mkdir bin
[me@linuxbox ~]$ mv hello_world bin
[me@linuxbox ~]$ hello_world
Hello World!

And so it does.

If the PATH variable does not contain the directory, we can easily add it by including this
line in our .bashrc file:

export PATH=~/bin:"$PATH"

After this change is made, it will take effect in each new terminal session. To apply the
change to the current terminal session, we must have the shell re-read the .bashrc file.
This can be done by “sourcing” it.

[me@linuxbox ~]$. .bashrc

The dot (.) command is a synonym for the source command, a shell builtin that reads a
specified file of shell commands and treats it like input from the keyboard.

Note: Ubuntu (and most other Debian-based distributions) automatically adds
the ~/bin directory to the PATH variable if the ~/bin directory exists when
the user’s .bashrc file is executed. So, on Ubuntu systems, if we create the ~/
bin directory and then log out and log in again, everything works.

367

24 – Writing Your First Script

Good Locations for Scripts

The ~/bin directory is a good place to put scripts intended for personal use. If we write
a script that everyone on a system is allowed to use, the traditional location is /usr/
local/bin. Scripts intended for use by the system administrator are often located in /
usr/local/sbin. In most cases, locally supplied software, whether scripts or com-
piled programs, should be placed in the /usr/local hierarchy and not in /bin or /
usr/bin. These directories are specified by the Linux Filesystem Hierarchy Standard
to contain only files supplied and maintained by the Linux distributor.

More Formatting Tricks

One of the key goals of serious script writing is ease of maintenance, that is, the ease
with which a script may be modified by its author or others to adapt it to changing needs.
Making a script easy to read and understand is one way to facilitate easy maintenance.

Long Option Names

Many of the commands we have studied feature both short and long option names. For
instance, the ls command has many options that can be expressed in either short or long
form. For example, the following:

[me@linuxbox ~]$ ls -ad

is equivalent to this:

[me@linuxbox ~]$ ls --all --directory

In the interests of reduced typing, short options are preferred when entering options on
the command line, but when writing scripts, long options can provide improved readabil-
ity.

Indentation and Line-Continuation

When employing long commands, readability can be enhanced by spreading the com-
mand over several lines. In Chapter 17, we looked at a particularly long example of the
find command.

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 -exec

368

More Formatting Tricks

chmod 0600 ‘{}’ ‘;’ \) -or \(-type d -not -perm 0700 -exec chmod
0700 ‘{}’ ‘;’ \)

Obviously, this command is a little hard to figure out at first glance. In a script, this com-
mand might be easier to understand if written this way:

find playground \
\(\

-type f \
-not -perm 0600 \
-exec chmod 0600 ‘{}’ ‘;’ \

\) \
-or \
\(\

-type d \
-not -perm 0700 \
-exec chmod 0700 ‘{}’ ‘;’ \

\)

By using line continuations (backslash-linefeed sequences) and indentation, the logic of
this complex command is more clearly described to the reader. This technique works on
the command line, too, though it is seldom used, as it is awkward to type and edit. One
difference between a script and a command line is that the script may employ tab charac-
ters to achieve indentation, whereas the command line cannot since tabs are used to acti-
vate completion.

Configuring vim For Script Writing

The vim text editor has many, many configuration settings. There are several
common options that can facilitate script writing.

The following turns on syntax highlighting:

:syntax on

With this setting, different elements of shell syntax will be displayed in different
colors when viewing a script. This is helpful for identifying certain kinds of pro-
gramming errors. It looks cool, too. Note that for this feature to work, you must
have a complete version of vim installed, and the file you are editing must have a

369

24 – Writing Your First Script

shebang indicating the file is a shell script. If you have difficulty with the previ-
ous command, try :set syntax=sh instead.

The following turns on the option to highlight search results.

:set hlsearch

Say we search for the word echo. With this option on, each instance of the word
will be highlighted.

The following sets the number of columns occupied by a tab character.:

:set tabstop=4

The default is eight columns. Setting the value to 4 (which is a common practice)
allows long lines to fit more easily on the screen.

The following turns on the “auto indent” feature:

:set autoindent

This causes vim to indent a new line the same amount as the line just typed. This
speeds up typing on many kinds of programming constructs. To stop indentation,
press Ctrl-d.

These changes can be made permanent by adding these commands (without the
leading colon characters) to your ~/.vimrc file.

Summing Up

In this first chapter of scripting, we looked at how scripts are written and made to easily
execute on our system. We also saw how we can use various formatting techniques to im-
prove the readability (and thus the maintainability) of our scripts. In future chapters, ease
of maintenance will come up again and again as a central principle in good script writing.

Further Reading

● For “Hello World” programs and examples in various programming languages,
see:
http://en.wikipedia.org/wiki/Hello_world

● This Wikipedia article talks more about the shebang mechanism:
http://en.wikipedia.org/wiki/Shebang_(Unix)

370

http://en.wikipedia.org/wiki/Shebang_(Unix)
http://en.wikipedia.org/wiki/Hello_world

