
23 – Compiling Programs

23 – Compiling Programs

In this chapter, we will look at how to build programs by compiling source code. The
availability of source code is the essential freedom that makes Linux possible. The entire
ecosystem of Linux development relies on free exchange between developers. For many
desktop users, compiling is a lost art. It used to be quite common, but today, distribution
providers maintain huge repositories of precompiled binaries, ready to download and use.
At the time of this writing, the Debian repository (one of the largest of any of the distri-
butions) contains more than 68,000 packages.

So why compile software? There are two reasons:

1. Availability. Despite the number of precompiled programs in distribution reposi-
tories, some distributions may not include all the desired applications. In this case,
the only way to get the desired program is to compile it from source.

2. Timeliness. While some distributions specialize in cutting-edge versions of pro-
grams, many do not. This means that to have the latest version of a program, com-
piling is necessary.

Compiling software from source code can become quite complex and technical and well
beyond the reach of many users. However, many compiling tasks are easy and involve
only a few steps. It all depends on the package. We will look at a simple case to provide
an overview of the process and as a starting point for those who want to undertake further
study.

We will introduce one new command:

● make – Utility to maintain programs

What is Compiling?

Simply put, compiling is the process of translating source code (the human-readable de-
scription of a program written by a programmer) into the native language of the com-
puter’s processor.

The computer’s processor (or CPU) works at an elemental level, executing programs in
what is called machine language. This is a numeric code that describes extremely small
operations, such as “add this byte,” “point to this location in memory,” or “copy this

350

What is Compiling?

byte.” Each of these instructions is expressed in binary (ones and zeros). The earliest
computer programs were written using this numeric code, which may explain why pro-
grammers who wrote it were said to smoke a lot, drink gallons of coffee, and wear thick
glasses.

This problem was overcome by the advent of assembly language, which replaced the nu-
meric codes with (slightly) easier to use character mnemonics such as CPY (for copy) and
MOV (for move). Programs written in assembly language are processed into machine
language by a program called an assembler. Assembly language is still used today for
certain specialized programming tasks, such as device drivers and embedded systems.

We next come to what are called high-level programming languages. They are called this
because they allow the programmer to be less concerned with the details of what the pro-
cessor is doing and more with solving the problem at hand. The early ones (developed
during the 1950s) include FORTRAN (designed for scientific and technical tasks) and
COBOL (designed for business applications). Both are still in limited use today.

While there are many popular programming languages, two predominate. Most programs
written for modern systems are written in either C or C++. In the examples to follow, we
will be compiling a C program.

Programs written in high-level programming languages are converted into machine lan-
guage by processing them with another program, called a compiler. Some compilers
translate high-level instructions into assembly language and then use an assembler to per-
form the final stage of translation into machine language.

A process often used in conjunction with compiling is called linking. There are many
common tasks performed by programs. Take, for instance, opening a file. Many programs
perform this task, but it would be wasteful to have each program implement its own rou-
tine to open files. It makes more sense to have a single piece of programming that knows
how to open files and to allow all programs that need it to share it. Providing support for
common tasks is accomplished by what are called libraries. They contain multiple rou-
tines, each performing some common task that multiple programs can share. If we look in
the /lib and /usr/lib directories, we can see where many of them live. A program
called a linker is used to form the connections between the output of the compiler and the
libraries that the compiled program requires. The final result of this process is the exe-
cutable program file, ready for use.

Are All Programs Compiled?

No. As we have seen, there are programs such as shell scripts that do not require compil-
ing. They are executed directly. These are written in what are known as scripting or inter-
preted languages. These languages have grown in popularity in recent years and include
Perl, Python, PHP, Ruby, and many others.

Scripted languages are executed by a special program called an interpreter. An interpreter

351

23 – Compiling Programs

inputs the program file and reads and executes each instruction contained within it. In
general, interpreted programs execute much more slowly than compiled programs. This is
because each source code instruction in an interpreted program is translated every time it
is carried out, whereas with a compiled program, a source code instruction is only trans-
lated once, and this translation is permanently recorded in the final executable file.

Why are interpreted languages so popular? For many programming chores, the results are
“fast enough,” but the real advantage is that it is generally faster and easier to develop in-
terpreted programs than compiled programs. Programs are usually developed in a repeat-
ing cycle of code, compile, test. As a program grows in size, the compilation phase of the
cycle can become quite long. Interpreted languages remove the compilation step and thus
speed up program development.

Compiling a C Program

Let’s compile something. Before we do that, however, we’re going to need some tools
like the compiler, the linker, and make. The C compiler used almost universally in the
Linux environment is called gcc (GNU C Compiler), originally written by Richard Stall-
man. Most distributions do not install gcc by default. We can check to see whether the
compiler is present like this:

[me@linuxbox ~]$ which gcc
/usr/bin/gcc

The results in this example indicate that the compiler is installed.

Tip: Your distribution may have a meta-package (a collection of packages) for
software development. If so, consider installing it if you intend to compile pro-
grams on your system. If your system does not provide a meta-package, try in-
stalling the gcc and make packages. On many distributions, this is sufficient to
carry out the following exercise.

Obtaining the Source Code

For our compiling exercise, we are going to compile a program from the GNU Project
called diction. This handy little program checks text files for writing quality and style.
As programs go, it is fairly small and easy to build.

Following convention, we’re first going to create a directory for our source code named
src and then download the source code into it using ftp.

352

Compiling a C Program

[me@linuxbox ~]$ mkdir src
[me@linuxbox ~]$ cd src
[me@linuxbox src]$ ftp ftp.gnu.org
Connected to ftp.gnu.org.
220 GNU FTP server ready.
Name (ftp.gnu.org:me): anonymous
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd gnu/diction
250 Directory successfully changed.
ftp> ls
200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.
-rw-r--r-- 1 1003 65534 68940 Aug 28 1998 diction-0.7.tar.gz
-rw-r--r-- 1 1003 65534 90957 Mar 04 2002 diction-1.02.tar.gz
-rw-r--r-- 1 1003 65534 141062 Sep 17 2007 diction-1.11.tar.gz
226 Directory send OK.
ftp> get diction-1.11.tar.gz
local: diction-1.11.tar.gz remote: diction-1.11.tar.gz
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for diction-1.11.tar.gz
(141062 bytes).
226 File send OK.
141062 bytes received in 0.16 secs (847.4 kB/s)
ftp> bye
221 Goodbye.
[me@linuxbox src]$ ls
diction-1.11.tar.gz

While we used ftp in the previous example, which is traditional, there are other ways of
downloading source code. For example, the GNU Project also supports downloading us-
ing HTTPS. We can download the diction source code using the wget program.

[me@linuxbox ~]$ wget https://ftp.gnu.org/gnu/diction/diction-
1.11.tar.gz
--2018-07-25 09:42:20-- https://ftp.gnu.org/gnu/diction/diction-
1.11.tar.gz
Resolving ftp.gnu.org (ftp.gnu.org)... 208.118.235.20,
2001:4830:134:3::b
Connecting to ftp.gnu.org (ftp.gnu.org)|208.118.235.20|:443...
connected.

353

ftp://ftp.gnu.org/
ftp://ftp.gnu.org/

23 – Compiling Programs

HTTP request sent, awaiting response... 200 OK
Length: 141062 (138K) [application/x-gzip]
Saving to: ‘diction-1.11.tar.gz’

diction-1.11.tar.gz 100%[===================>] 137.76K --.-KB/s
in 0.09s

2018-07-25 09:42:20 (1.43 MB/s) - ‘diction-1.11.tar.gz.1’ saved
[141062/141062]

Note: Since we are the “maintainer” of this source code while we compile it, we
will keep it in ~/src. Source code installed by your distribution will be in-
stalled in /usr/src, while source code we maintain that's intended for use by
multiple users is usually installed in /usr/local/src.

As we can see, source code is usually supplied in the form of a compressed tar file.
Sometimes called a tarball, this file contains the source tree, or hierarchy of directories
and files that comprise the source code. After arriving at the ftp site, we examine the list
of tar files available and select the newest version for download. Using the get com-
mand within ftp, we copy the file from the ftp server to the local machine.

Once the tar file is downloaded, it must be unpacked. This is done with the tar program.

[me@linuxbox src]$ tar xzf diction-1.11.tar.gz
[me@linuxbox src]$ ls
diction-1.11 diction-1.11.tar.gz

Tip: The diction program, like all GNU Project software, follows certain
standards for source code packaging. Most other source code available in the
Linux ecosystem also follows this standard. One element of the standard is that
when the source code tar file is unpacked, a directory will be created that con-
tains the source tree, and this directory will be named project-x.xx, thus contain-
ing both the project’s name and its version number. This scheme allows easy in-
stallation of multiple versions of the same program. However, it is often a good
idea to examine the layout of the tree before unpacking it. Some projects will not
create the directory but instead will deliver the files directly into the current di-
rectory. This will make a mess in our otherwise well-organized src directory. To

354

Compiling a C Program

avoid this, use the following command to examine the contents of the tar file:

tar tzvf tarfile | head

Examining the Source Tree

Unpacking the tar file results in the creation of a new directory, named diction-1.11.
This directory contains the source tree. Let’s look inside.

[me@linuxbox src]$ cd diction-1.11
[me@linuxbox diction-1.11]$ ls
config.guess diction.c getopt.c nl
config.h.in diction.pot getopt.h nl.po
config.sub diction.spec getopt_int.h README
configure diction.spec.in INSTALL sentence.c
configure.in diction.texi.in install-sh sentence.h
COPYING en Makefile.in style.1.in
de en_GB misc.c style.c
de.po en_GB.po misc.h test
diction.1.in getopt1.c NEWS

In it, we see a number of files. Programs belonging to the GNU Project, as well as many
others, will supply the documentation files README, INSTALL, NEWS, and COPYING.
These files contain the description of the program, information on how to build and in-
stall it, and its licensing terms. It is always a good idea to carefully read the README and
INSTALL files before attempting to build the program.

The other interesting files in this directory are the ones ending with .c and .h.

[me@linuxbox diction-1.11]$ ls *.c
diction.c getopt1.c getopt.c misc.c sentence.c style.c
[me@linuxbox diction-1.11]$ ls *.h
getopt.h getopt_int.h misc.h sentence.h

The .c files contain the two C programs supplied by the package (style and dic-
tion), divided into modules. It is common practice for large programs to be broken into
smaller, easier-to-manage pieces. The source code files are ordinary text and can be ex-
amined with less.

355

23 – Compiling Programs

[me@linuxbox diction-1.11]$ less diction.c

The .h files are known as header files. These, too, are ordinary text. Header files contain
descriptions of the routines included in a source code file or library. For the compiler to
connect the modules, it must receive a description of all the modules needed to complete
the entire program. Near the beginning of the diction.c file, we see this line:

#include "getopt.h"

This instructs the compiler to read the file getopt.h as it reads the source code in
diction.c to “know” what’s in getopt.c. The getopt.c file supplies routines
that are shared by both the style and diction programs.

Before the include statement for getopt.h, we see some other include statements
such as these:

#include <regex.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

These also refer to header files, but they refer to header files that live outside the current
source tree. They are supplied by the system to support the compilation of every program.
If we look in /usr/include, we can see them.

[me@linuxbox diction-1.11]$ ls /usr/include

The header files in this directory were installed when we installed the compiler.

Building the Program

Most programs build with a simple, two-command sequence.

./configure
make

356

Compiling a C Program

The configure program is a shell script that is supplied with the source tree. Its job is
to analyze the build environment. Most source code is designed to be portable. That is, it
is designed to build on more than one kind of Unix-like system. But to do that, the source
code may need to undergo slight adjustments during the build to accommodate differ-
ences between systems. configure also checks to see that necessary external tools and
components are installed. Let’s run configure. Since configure is not located
where the shell normally expects programs to be located, we must explicitly tell the shell
its location by prefixing the command with ./ to indicate that the program is located in
the current working directory.

[me@linuxbox diction-1.11]$./configure

configure will output a lot of messages as it tests and configures the build. When it
finishes, it will look something like this:

checking libintl.h presence... yes
checking for libintl.h... yes
checking for library containing gettext... none required
configure: creating ./config.status
config.status: creating Makefile
config.status: creating diction.1
config.status: creating diction.texi
config.status: creating diction.spec
config.status: creating style.1
config.status: creating test/rundiction
config.status: creating config.h
[me@linuxbox diction-1.11]$

What’s important here is that there are no error messages. If there were, the configuration
failed, and the program will not build until the errors are corrected.

We see configure created several new files in our source directory. The most impor-
tant one is the makefile. The makefile is a configuration file that instructs the make pro-
gram exactly how to build the program. Without it, make will refuse to run. The makefile
is an ordinary text file, so we can view it:

[me@linuxbox diction-1.11]$ less Makefile

The make program takes as input a makefile (which is normally named Makefile),

357

23 – Compiling Programs

which describes the relationships and dependencies among the components that comprise
the finished program.

The first part of the makefile defines variables that are substituted in later sections of the
makefile. For example we see the following line:

CC= gcc

That defines the C compiler to be gcc. Later in the makefile, we see one instance where
it gets used.

diction: diction.o sentence.o misc.o getopt.o getopt1.o
 $(CC) -o $@ $(LDFLAGS) diction.o sentence.o misc.o \
 getopt.o getopt1.o $(LIBS)

A substitution is performed here, and the value $(CC) is replaced by gcc at runtime.

Most of the makefile consists of lines, which define a target, in this case the executable
file diction and the files on which it is dependent. The remaining lines describe the
commands needed to create the target from its components. We see in this example that
the executable file diction (one of the end products) depends on the existence of
diction.o, sentence.o, misc.o, getopt.o, and getopt1.o. Later, in the
makefile, we see definitions of each of these as targets.

diction.o: diction.c config.h getopt.h misc.h sentence.h
getopt.o: getopt.c getopt.h getopt_int.h
getopt1.o: getopt1.c getopt.h getopt_int.h
misc.o: misc.c config.h misc.h
sentence.o: sentence.c config.h misc.h sentence.h
style.o: style.c config.h getopt.h misc.h sentence.h

However, we don’t see any command specified for them. This is handled by a general tar-
get, earlier in the file, that describes the command used to compile any .c file into a .o
file.

.c.o:
 $(CC) -c $(CPPFLAGS) $(CFLAGS) $<

This all seems very complicated. Why not simply list all the steps to compile the parts

358

Compiling a C Program

and be done with it? The answer to this will become clear in a moment. In the meantime,
let’s run make and build our programs.

[me@linuxbox diction-1.11]$ make

The make program will run, using the contents of Makefile to guide its actions. It will
produce a lot of messages.

When it finishes, we will see that all the targets are now present in our directory.

[me@linuxbox diction-1.11]$ ls
config.guess de.po en install-sh sentence.c
config.h diction en_GB Makefile sentence.h
config.h.in diction.1 en_GB.mo Makefile.in sentence.o
config.log diction.1.in en_GB.po misc.c style
config.status diction.c getopt1.c misc.h style.1
config.sub diction.o getopt1.o misc.o style.1.in
configure diction.pot getopt.c NEWS style.c
configure.in diction.spec getopt.h nl style.o
COPYING diction.spec.in getopt_int.h nl.mo test
de diction.texi getopt.o nl.po
de.mo diction.texi.in INSTALL README

Among the files, we see diction and style, the programs that we set out to build.
Congratulations are in order! We just compiled our first programs from source code!

But just out of curiosity, let’s run make again.

[me@linuxbox diction-1.11]$ make
make: Nothing to be done for `all'.

It only produces this strange message. What’s going on? Why didn’t it build the program
again? Ah, this is the magic of make. Rather than simply building everything again,
make only builds what needs building. With all of the targets present, make determined
that there was nothing to do. We can demonstrate this by deleting one of the targets and
running make again to see what it does. Let’s get rid of one of the intermediate targets.

[me@linuxbox diction-1.11]$ rm getopt.o
[me@linuxbox diction-1.11]$ make

359

23 – Compiling Programs

We see that make rebuilds it and re-links the diction and style programs, since they
depend on the missing module. This behavior also points out another important feature of
make: it keeps targets up-to-date. make insists that targets be newer than their dependen-
cies. This makes perfect sense, because a programmer will often update a bit of source
code and then use make to build a new version of the finished product. make ensures
that everything that needs building based on the updated code is built. If we use the
touch program to “update” one of the source code files, we can see this happen:

[me@linuxbox diction-1.11]$ ls -l diction getopt.c
-rwxr-xr-x 1 me me 37164 2009-03-05 06:14 diction
-rw-r--r-- 1 me me 33125 2007-03-30 17:45 getopt.c
[me@linuxbox diction-1.11]$ touch getopt.c
[me@linuxbox diction-1.11]$ ls -l diction getopt.c
-rwxr-xr-x 1 me me 37164 2009-03-05 06:14 diction
-rw-r--r-- 1 me me 33125 2009-03-05 06:23 getopt.c
[me@linuxbox diction-1.11]$ make

After make runs, we see that it has restored the target to being newer than the depen-
dency:

[me@linuxbox diction-1.11]$ ls -l diction getopt.c
-rwxr-xr-x 1 me me 37164 2009-03-05 06:24 diction
-rw-r--r-- 1 me me 33125 2009-03-05 06:23 getopt.c

The ability of make to intelligently build only what needs building is a great benefit to
programmers. While the time savings may not be apparent with our small project, it is
very significant with larger projects. Remember, the Linux kernel (a program that under-
goes continuous modification and improvement) contains several million lines of code.

Installing the Program

Well-packaged source code will often include a special make target called install.
This target will install the final product in a system directory for use. Usually, this direc-
tory is /usr/local/bin, the traditional location for locally built software. However,
this directory is not normally writable by ordinary users, so we must become the supe-
ruser to perform the installation.

[me@linuxbox diction-1.11]$ sudo make install

360

Compiling a C Program

After we perform the installation, we can check that the program is ready to go.

[me@linuxbox diction-1.11]$ which diction
/usr/local/bin/diction
[me@linuxbox diction-1.11]$ man diction

There we have it!

Summing Up

In this chapter, we saw how three simple commands:

./configure

make

make install

can be used to build many source code packages. We also saw the important role that
make plays in the maintenance of programs. The make program can be used for any task
that needs to maintain a target/dependency relationship, not just for compiling source
code.

Further Reading

● The Wikipedia has good articles on compilers and the make program:
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Make_(software)

● The GNU Make Manual:
http://www.gnu.org/software/make/manual/html_node/index.html

361

http://www.gnu.org/software/make/manual/html_node/index.html
http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Compiler

