
22 – Printing

22 – Printing

After spending the last couple of chapters manipulating text, it’s time to put that text on
paper. In this chapter, we’ll look at the command line tools that are used to print files and
control printer operation. We won’t be looking at how to configure printing, because that
varies from distribution to distribution and is usually set up automatically during installa-
tion. Note that we will need a working printer configuration to perform the exercises in
this chapter.

We will discuss the following commands:

● pr – Convert text files for printing

● lpr – Print files

● a2ps – Format files for printing on a PostScript printer

● lpstat – Show printer status information

● lpq – Show printer queue status

● lprm – Cancel print jobs

A Brief History of Printing

To fully understand the printing features found in Unix-like operating systems, we must
first learn some history. Printing on Unix-like systems goes way back to the beginning of
the operating system. In those days, printers and how they were used were much different
from today.

Printing in the Dim Times

Like computers, printers in the pre-PC era tended to be large, expensive, and centralized.
The typical computer user of 1980 worked at a terminal connected to a computer some
distance away. The printer was located near the computer and was under the watchful
eyes of the computer’s operators.

When printers were expensive and centralized, as they often were in the early days of
Unix, it was common practice for many users to share a printer. To identify print jobs be-

337

22 – Printing

longing to a particular user, a banner page displaying the name of the user was often
printed at the beginning of each print job. The computer support staff would then load up
a cart containing the day’s print jobs and deliver them to the individual users.

Character-Based Printers

The printer technology of the 80s was very different from today in two respects. First,
printers of that period were almost always impact printers. Impact printers use a mechan-
ical mechanism that strikes a ribbon against the paper to form character impressions on
the page. Two of the popular technologies of that time were daisy-wheel printing and dot-
matrix printing.

The second, and more important characteristic of early printers was that printers used a
fixed set of characters that were intrinsic to the device. For example, a daisy-wheel
printer could only print the characters actually molded into the petals of the daisy wheel.
This made the printers much like high-speed typewriters. As with most typewriters, they
printed using monospaced (fixed width) fonts. This means that each character has the
same width. Printing was done at fixed positions on the page, and the printable area of a
page contained a fixed number of characters. Most printers printed ten characters per inch
(CPI) horizontally and six lines per inch (LPI) vertically. Using this scheme, a US-letter
sheet of paper is 85 characters wide and 66 lines high. Taking into account a small margin
on each side, 80 characters was considered the maximum width of a print line. This ex-
plains why terminal displays (and our terminal emulators) are normally 80 characters
wide. Using a monospaced font and and an 80 character wide terminal provides a What
You See Is What You Get (WYSIWYG) view of printed output.

Data is sent to a typewriter-like printer in a simple stream of bytes containing the charac-
ters to be printed. For example, to print an “a”, the ASCII character code 97 is sent. In ad-
dition, the low-numbered ASCII control codes provided a means of moving the printer’s
carriage and paper, using codes for carriage return, line feed, form feed, and so on. Using
the control codes, it’s possible to achieve some limited font effects, such as boldface, by
having the printer print a character, backspace, and print the character again to get a
darker print impression on the page. We can actually witness this if we use nroff to ren-
der a man page and examine the output using cat -A.

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | nroff -man | cat
-A | head
LS(1) User Commands LS(1)
$
$
$
N^HNA^HAM^HME^HE$
 ls - list directory contents$

338

A Brief History of Printing

$
S^HSY^HYN^HNO^HOP^HPS^HSI^HIS^HS$
 l^Hls^Hs [_^HO_^HP_^HT_^HI_^HO_^HN]... [_^HF_^HI_^HL_^HE]...$

The ^H (Ctrl-h) characters are the backspaces used to create the boldface effect. Like-
wise, we can also see a backspace/underscore sequence used to produce underlining.

Graphical Printers

The development of GUIs led to major changes in printer technology. As computers
moved to more picture-based displays, printing moved from character-based to graphical
techniques. This was facilitated by the advent of the low-cost laser printer which, instead
of printing fixed characters, could print tiny dots anywhere in the printable area of the
page. This made printing proportional fonts (like those used by typesetters), and even
photographs and high-quality diagrams, possible.

However, moving from a character-based scheme to a graphical scheme presented a for-
midable technical challenge. Here’s why: the number of bytes needed to fill a page using
a character-based printer can be calculated this way (assuming 60 lines per page each
containing 80 characters):

60 X 80 = 4,800 bytes

In comparison, a 300 dot per inch (DPI) laser printer (assuming an 8 by 10 inch print area
per page) requires this many bytes:

(8 X 300) X (10 X 300) / 8 = 900,000 bytes

Many of the slow PC networks simply could not handle the nearly one megabyte of data
required to print a full page on a laser printer, so it was clear that a clever invention was
needed.

That invention turned out to be the page description language (PDL). A page description
language is a programming language that describes the contents of a page. Basically it
says, “Go to this position, draw the character ‘a’ in 10 point Helvetica, go to this posi-
tion...” until everything on the page is described. The first major PDL was PostScript
from Adobe Systems, which is still in wide use today. The PostScript language is a com-
plete programming language tailored for typography and other kinds of graphics and
imaging. It includes built-in support for 35 standard, high-quality fonts, plus the ability to
accept additional font definitions at runtime. At first, support for PostScript was built into
the printers themselves. This solved the data transmission problem. While the typical
PostScript program was very verbose in comparison to the simple byte stream of charac-
ter-based printers, it was much smaller than the number of bytes required to represent the
entire printed page.

339

22 – Printing

A PostScript printer accepted a PostScript program as input. The printer contained its
own processor and memory (oftentimes making the printer a more powerful computer
than the computer to which it was attached) and executed a special program called a
PostScript interpreter, which read the incoming PostScript program and rendered the re-
sults into the printer’s internal memory, thus forming the pattern of bits (dots) that would
be transferred to the paper. The generic name for this process of rendering something into
a large bit pattern (called a bitmap) is raster image processor (RIP).

As the years went by, both computers and networks became much faster. This allowed the
RIP to move from the printer to the host computer, which, in turn, permitted high-quality
printers to be much less expensive.

Many printers today still accept character-based streams, but many low-cost printers do
not. They rely on the host computer’s RIP to provide a stream of bits to print as dots.
There are still some PostScript printers, too.

Printing with Linux

Modern Linux systems employ two software suites to perform and manage printing. The
first, Common Unix Printing System (CUPS) provides print drivers and print-job man-
agement, and the second, Ghostscript, a PostScript interpreter, acts as a RIP.

CUPS manages printers by creating and maintaining print queues. As we discussed in the
earlier history lesson, Unix printing was originally designed to manage a centralized
printer shared by multiple users. Since printers are slow by nature, compared to the com-
puters that are feeding them, printing systems need a way to schedule multiple print jobs
and keep things organized. CUPS also has the ability to recognize different types of data
(within reason) and can convert files to a printable form.

Preparing Files for Printing

As command line users, we are mostly interested in printing text, though it is certainly
possible to print other data formats as well.

pr – Convert Text Files for Printing

We looked at pr a little in the previous chapter. Now we will examine some of its many
options used in conjunction with printing. In our history of printing, we saw how charac-
ter-based printers use monospaced fonts, resulting in fixed numbers of characters per line
and lines per page. pr is used to adjust text to fit on a specific page size, with optional
page headers and margins. Table 22-1 summarizes its most commonly used options.

340

Preparing Files for Printing

Table 22-1: Common pr Options

Option Description

+first[:last] Output a range of pages starting with first and, optionally,
ending with last.

-columns Organize the content of the page into the number of columns
specified by columns.

-a By default, multicolumn output is listed vertically. By adding
the -a (across) option, content is listed horizontally.

-d Double-space output.

-D “format” Format the date displayed in page headers using format. See
the man page for the date command for a description of the
format string.

-f Use form feeds rather than carriage returns to separate pages.

-h “header” In the center portion of the page header, use header rather
than the name of the file being processed.

-l length Set page length to length. The default is 66 (US letter at six
lines per inch)

-n Number lines.

-o offset Create a left margin offset characters wide.

-w width Set the page width to width. The default is 72.

pr is often used in pipelines as a filter. In this example, we will produce a directory list-
ing of /usr/bin and format it into paginated, three-column output using pr:

[me@linuxbox ~]$ ls /usr/bin | pr -3 -w 65 | head

2016-02-18 14:00 Page 1
[apturl bsd-write
411toppm ar bsh
a2p arecord btcflash
a2ps arecordmidi bug-buddy
a2ps-lpr-wrapper ark buildhash

341

22 – Printing

Sending a Print Job to a Printer

The CUPS printing suite supports two methods of printing historically used on Unix-like
systems. One method, called Berkeley or LPD (used in the Berkeley Software Distribu-
tion version of Unix), uses the lpr program, while the other method, called SysV (from
the System V version of Unix), uses the lp program. Both programs do roughly the same
thing. Choosing one over the other is a matter of personal taste.

lpr – Print Files (Berkeley Style)

The lpr program can be used to send files to the printer. It may also be used in pipelines,
as it accepts standard input. For example, to print the results of our previous multicolumn
directory listing, we could do this:

[me@linuxbox ~]$ ls /usr/bin | pr -3 | lpr

The report would be sent to the system’s default printer. To send the file to a different
printer, the -P option can be used like this:

lpr -P printer_name

Here, printer_name is the name of the desired printer. To see a list of printers known to
the system, use this:

[me@linuxbox ~]$ lpstat -a

Tip: Many Linux distributions allow you to define a “printer” that outputs files
in Portable Document Format (PDF), rather than printing on the physical printer.
This is very handy for experimenting with printing commands. Check your
printer configuration program to see whether it supports this configuration. On
some distributions, you may need to install additional packages (such as cups-
pdf) to enable this capability.

Table 22-2 describes the common options for lpr.

Table 22-2: Common lpr Options

Option Description

342

Sending a Print Job to a Printer

-# number Set number of copies to number.

-p Print each page with a shaded header with the date, time, job
name, and page number. This so-called “pretty print” option
can be used when printing text files.

-P printer Specify the name of the printer used for output. If no printer is
specified, the system’s default printer is used.

-r Delete files after printing. This would be useful for programs
that produce temporary printer-output files.

lp – Print Files (System V Style)

Like lpr, lp accepts either files or standard input for printing. It differs from lpr in
that it supports a different (and slightly more sophisticated) option set. Table 22-3 de-
scribes the common options.

Table 22-3: Common lp Options

Option Description

-d printer Set the destination (printer) to printer. If no d
option is specified, the system default printer is
used.

-n number Set the number of copies to number.

-o landscape Set output to landscape orientation.

-o fitplot Scale the file to fit the page. This is useful when
printing images, such as JPEG files.

-o scaling=number Scale file to number. The value of 100 fills the
page. Values less than 100 are reduced, while
values greater than 100 cause the file to be printed
across multiple pages.

-o cpi=number Set the output characters per inch to number. The
default is 10.

-o lpi=number Set the output lines per inch to number. The
default is 6.

-o page-bottom=points
-o page-left=points
-o page-right=points

Set the page margins. Values are expressed in
points, a unit of typographic measurement. There
are 72 points to an inch.

343

22 – Printing

-o page-top=points

-P pages Specify the list of pages. pages may be expressed
as a comma-separated list and/or a range, for
example, 1,3,5,7-10

We’ll produce our directory listing again, this time printing 12 CPI and 8 LPI with a left
margin of one half inch. Note that we have to adjust the pr options to account for the
new page size:

[me@linuxbox ~]$ ls /usr/bin | pr -4 -w 90 -l 88 | lp -o page-left=36
-o cpi=12 -o lpi=8

This pipeline produces a four-column listing using smaller type than the default. The in-
creased number of characters per inch allows us to fit more columns on the page.

Another Option: a2ps

The a2ps program (available in most repositories) is interesting. As we can surmise
from its name, it’s a format conversion program, but it also much more. Its name origi-
nally meant “ASCII to PostScript” and it was used to prepare text files for printing on
PostScript printers. Over the years, however, the capabilities of the program have grown,
and now its name means “Anything to PostScript.” While its name suggests a format-
conversion program, it is actually a printing program. It sends its default output to the
system’s default printer rather than standard output. The program’s default behavior is
that of a “pretty printer,” meaning that it improves the appearance of output. We use the
program to create a PostScript file on our desktop.

[me@linuxbox ~]$ ls /usr/bin | pr -3 -t | a2ps -o ~/Desktop/ls.ps -L
66
[stdin (plain): 11 pages on 6 sheets]
[Total: 11 pages on 6 sheets] saved into the file `/home/me/Desktop/
ls.ps'

Here we filter the stream with pr, using the -t option (omit headers and footers), and
then with a2ps, specifying an output file (-o option) and 66 lines per page (-L option)
to match the output pagination of pr. If we view the resulting file with a suitable file
viewer, we will see the output in Figure 7.

344

Sending a Print Job to a Printer

As we can see, the default output layout is “two up” format. This causes the contents of
two pages to be printed on each sheet of paper. a2ps applies nice page headers and foot-
ers, too.

a2ps has a lot of options. Table 22-4 provides a summary.

Table 22-4: a2ps Options

Option Description

--center-title=text Set center page title to text.

--columns=number Arrange pages into number columns. The
default is 2.

--footer=text Set page footer to text.

--guess Report the types of files given as arguments.

345

Figure 7: Viewing a2ps output

22 – Printing

Since a2ps tries to convert and format all
types of data, this option can be useful for
predicting what a2ps will do when given a
particular file.

--left-footer=text Set the left-page footer to text.

--left-title=text Set the left-page title to text.

--line-numbers=interval Number lines of output every interval lines.

--list=defaults Display default settings.

--pages=range Print pages in range.

--right-footer=text Set the right-page footer to text.

--right-title=text Set the right-page title to text.

--rows=number Arrange pages into number rows. The default
is 1.

-B No page headers.

-b text Set the page header to text.

-f size Use size point font.

-l number Set characters per line to number. This and the
-L option (see next entry) can be used to make
files paginated with other programs, such as
pr, fit correctly on the page.

-L number Set lines per page to number.

-M name Use media name. For example, A4.

-n number Output number copies of each page.

-o file Send output to file. If file is specified as -, use
standard output.

-P printer Use printer. If a printer is not specified, the
system default printer is used.

-R Portrait orientation.

-r Landscape orientation.

-T number Set tab stops to every number characters.

-u text Underlay (watermark) pages with text.

346

Sending a Print Job to a Printer

This is just a summary. a2ps has several more options.

Note: There is another output formatter that is useful for converting text into
PostScript. Called enscript, it can perform many of the same kinds of format-
ting and printing tricks, but unlike a2ps, it only accepts text input.

Monitoring and Controlling Print Jobs

As Unix printing systems are designed to handle multiple print jobs from multiple users,
CUPS is designed to do the same. Each printer is given a print queue, where jobs are
parked until they can be spooled to the printer. CUPS supplies several command line pro-
grams that are used to manage printer status and print queues. Like the lpr and lp pro-
grams, these management programs are modeled after the corresponding programs from
the Berkeley and System V printing systems.

lpstat – Display Print System Status

The lpstat program is useful for determining the names and availability of printers on
the system. For example, if we had a system with both a physical printer (named
“printer”) and a PDF virtual printer (named “PDF”), we could check their status like this:

[me@linuxbox ~]$ lpstat -a
PDF accepting requests since Mon 08 Dec 2017 03:05:59 PM EST
printer accepting requests since Tue 24 Feb 2018 08:43:22 AM EST

Further, we could determine a more detailed description of the print system configuration
this way:

[me@linuxbox ~]$ lpstat -s
system default destination: printer
device for PDF: cups-pdf:/
device for printer: ipp://print-server:631/printers/printer

In this example, we see that “printer” is the system’s default printer and that it is a net-
work printer using Internet Printing Protocol (ipp://) attached to a system named “print-
server”.

Table 22-5 lists the commonly useful options.

347

22 – Printing

Table 22-5: Common lpstat Options

Option Description

-a [printer...] Display the state of the printer queue for printer. Note that
this is the status of the printer queue’s ability to accept
jobs, not the status of the physical printers. If no printers
are specified, all print queues are shown.

-d Display the name of the system’s default printer.

-p [printer...] Display the status of the specified printer. If no printers
are specified, all printers are shown.

-r Display the status of the print server.

-s Display a status summary.

-t Display a complete status report.

lpq – Display Printer Queue Status

To see the status of a printer queue, the lpq program is used. This allows us to view the
status of the queue and the print jobs it contains. Here is an example of an empty queue
for a system default printer named “printer”:

[me@linuxbox ~]$ lpq
printer is ready
no entries

If we do not specify a printer (using the -P option), the system’s default printer is shown.
If we send a job to the printer and then look at the queue, we will see it listed.

[me@linuxbox ~]$ ls *.txt | pr -3 | lp
request id is printer-603 (1 file(s))
[me@linuxbox ~]$ lpq
printer is ready and printing
Rank Owner Job File(s) Total Size
active me 603 (stdin) 1024 bytes

348

Monitoring and Controlling Print Jobs

lprm / cancel – Cancel Print Jobs

CUPS supplies two programs used to terminate print jobs and remove them from the print
queue. One is Berkeley style (lprm) and the other is System V (cancel). They differ
slightly in the options they support, but do basically the same thing. Using our earlier
print job as an example, we could stop the job and remove it this way:

[me@linuxbox ~]$ cancel 603
[me@linuxbox ~]$ lpq
printer is ready
no entries

Each command has options for removing all the jobs belonging to a particular user, par-
ticular printer, and multiple job numbers. Their respective man pages have all the details.

Summing Up

In this chapter, we saw how the printers of the past influenced the design of the printing
systems on Unix-like machines, and how much control is available on the command line
to control not only the scheduling and execution of print jobs, but also the various output
options.

Further Reading

● A good article on the PostScript page description language:
http://en.wikipedia.org/wiki/PostScript

● The Common Unix Printing System (CUPS):
http://en.wikipedia.org/wiki/Common_Unix_Printing_System
http://www.cups.org/

● The Berkeley and System V Printing Systems:
http://en.wikipedia.org/wiki/Berkeley_printing_system
http://en.wikipedia.org/wiki/System_V_printing_system

349

http://en.wikipedia.org/wiki/System_V_printing_system
http://en.wikipedia.org/wiki/Berkeley_printing_system
http://www.cups.org/
http://en.wikipedia.org/wiki/Common_Unix_Printing_System
http://en.wikipedia.org/wiki/PostScript

