
21 – Formatting Output

21 – Formatting Output

In this chapter, we continue our look at text-related tools, focusing on programs that are
used to format text output, rather than changing the text itself. These tools are often used
to prepare text for eventual printing, a subject that we will cover in the next chapter. We
will cover the following programs in this chapter:

● nl – Number lines

● fold – Wrap each line to a specified length

● fmt – A simple text formatter

● pr – Prepare text for printing

● printf – Format and print data

● groff – A document formatting system

Simple Formatting Tools

We’ll look at some of the simple formatting tools first. These are mostly single-purpose
programs, and a bit unsophisticated in what they do, but they can be used for small tasks
and as parts of pipelines and scripts.

nl – Number Lines

The nl program is a rather arcane tool used to perform a simple task. It numbers lines. In
its simplest use, it resembles cat -n.

[me@linuxbox ~]$ nl distros.txt | head
 1 SUSE 10.2 12/07/2006
 2 Fedora 10 11/25/2008
 3 SUSE 11.0 06/19/2008
 4 Ubuntu 8.04 04/24/2008
 5 Fedora 8 11/08/2007
 6 SUSE 10.3 10/04/2007

315

21 – Formatting Output

 7 Ubuntu 6.10 10/26/2006
 8 Fedora 7 05/31/2007
 9 Ubuntu 7.10 10/18/2007
 10 Ubuntu 7.04 04/19/2007

Like cat, nl can accept either multiple files as command line arguments or standard in-
put. However, nl has a number of options and supports a primitive form of markup to al-
low more complex kinds of numbering.

nl supports a concept called “logical pages” when numbering. This allows nl to reset
(start over) the numerical sequence when numbering. Using options, it is possible to set
the starting number to a specific value and, to a limited extent, its format. A logical page
is further broken down into a header, body, and footer. Within each of these sections, line
numbering may be reset and/or be assigned a different style. If nl is given multiple files,
it treats them as a single stream of text. Sections in the text stream are indicated by the
presence of some rather odd-looking markup added to the text, as described in Table 21-
1.

Table 21-1: nl Markup

Markup Meaning

\:\:\: Start of logical page header

\:\: Start of logical page body

\: Start of logical page footer

Each of the markup elements listed in Table 21-1 must appear alone on its own line. After
processing a markup element, nl deletes it from the text stream.

Table 21-2 lists the common options for nl.

Table 21-2: Common nl Options

Option Meaning

-b style Set body numbering to style, where style is one of the following:
a = Number all lines
t = Number only non-blank lines. This is the default.
n = None
pregexp = Number only lines matching basic regular expression
regexp.

-f style Set footer numbering to style. The default is n (none).

316

Simple Formatting Tools

-h style Set header numbering to style. The default is n (none).

-i number Set page numbering increment to number. The default is one.

-n format Sets numbering format to format, where format is one of the
following:
ln = Left justified, without leading zeros.
rn = Right justified, without leading zeros. This is the default.
rz = Right justified, with leading zeros.

-p Do not reset page numbering at the beginning of each logical page.

-s string Add string to the end of each line number to create a separator. The
default is a single tab character.

-v number Set first line number of each logical page to number. The default is
one.

-w width Set width of the line number field to width. The default is 6.

Admittedly, we probably won’t be numbering lines that often, but we can use nl to look
at how we can combine multiple tools to perform more complex tasks. We will build on
our work in the previous chapter to produce a Linux distributions report. Since we will be
using nl, it will be useful to include its header/body/footer markup. To do this, we will
add it to the sed script from the previous chapter. Using our text editor, we will change
the script as follows and save it as distros-nl.sed:

sed script to produce Linux distributions report

1 i\
\\:\\:\\:\
\
Linux Distributions Report\
\
Name Ver. Released\
---- ---- --------\
\\:\\:
s/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/
$ a\
\\:\
\
End Of Report

317

21 – Formatting Output

The script now inserts the nl logical page markup and adds a footer at the end of the re-
port. Note that we had to double up the backslashes in our markup because they are nor-
mally interpreted as an escape character by sed.

Next, we’ll produce our enhanced report by combining sort, sed, and nl.

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-nl.s
ed | nl

 Linux Distributions Report

 Name Ver. Released
 ---- ---- --------

 1 Fedora 5 2006-03-20
 2 Fedora 6 2006-10-24
 3 Fedora 7 2007-05-31
 4 Fedora 8 2007-11-08
 5 Fedora 9 2008-05-13
 6 Fedora 10 2008-11-25
 7 SUSE 10.1 2006-05-11
 8 SUSE 10.2 2006-12-07
 9 SUSE 10.3 2007-10-04
 10 SUSE 11.0 2008-06-19
 11 Ubuntu 6.06 2006-06-01
 12 Ubuntu 6.10 2006-10-26
 13 Ubuntu 7.04 2007-04-19
 14 Ubuntu 7.10 2007-10-18
 15 Ubuntu 8.04 2008-04-24
 16 Ubuntu 8.10 2008-10-30

 End Of Report

Our report is the result of our pipeline of commands. First, we sort the list by distribution
name and version (fields 1 and 2), and then we process the results with sed, adding the
report header (including the logical page markup for nl) and footer. Finally, we process
the result with nl, which, by default, only numbers the lines of the text stream that be-
long to the body section of the logical page.

We can repeat the command and experiment with different options for nl. Some interest-

318

Simple Formatting Tools

ing ones are the following:

nl -n rz

and the following:

 nl -w 3 -s ' '

fold – Wrap Each Line to a Specified Length

Folding is the process of breaking lines of text at a specified width. Like our other com-
mands, fold accepts either one or more text files or standard input. If we send fold a
simple stream of text, we can see how it works.

[me@linuxbox ~]$ echo "The quick brown fox jumped over the lazy dog."
| fold -w 12
The quick br
own fox jump
ed over the
lazy dog.

Here we see fold in action. The text sent by the echo command is broken into seg-
ments specified by the -w option. In this example, we specify a line width of 12 charac-
ters. If no width is specified, the default is 80 characters. Notice how the lines are broken
regardless of word boundaries. The addition of the -s option will cause fold to break
the line at the last available space before the line width is reached.

[me@linuxbox ~]$ echo "The quick brown fox jumped over the lazy dog."
| fold -w 12 -s
The quick
brown fox
jumped over
the lazy
dog.

319

21 – Formatting Output

fmt – A Simple Text Formatter

The fmt program also folds text, plus a lot more. It accepts either files or standard input
and performs paragraph formatting on the text stream. Basically, it fills and joins lines in
text while preserving blank lines and indentation.

To demonstrate, we’ll need some text. Let’s lift some from the fmt info page.

 `fmt' reads from the specified FILE arguments (or standard input
if none are given), and writes to standard output.

 By default, blank lines, spaces between words, and indentation are
preserved in the output; successive input lines with different
indentation are not joined; tabs are expanded on input and introduced
on output.

 `fmt' prefers breaking lines at the end of a sentence, and tries
to avoid line breaks after the first word of a sentence or before the
last word of a sentence. A "sentence break" is defined as either the
end of a paragraph or a word ending in any of `.?!', followed by two
spaces or end of line, ignoring any intervening parentheses or
quotes. Like TeX, `fmt' reads entire "paragraphs" before choosing
line breaks; the algorithm is a variant of that given by Donald E.
Knuth and Michael F. Plass in "Breaking Paragraphs Into Lines",
`Software--Practice & Experience' 11, 11 (November 1981), 1119-1184.

We’ll copy this text into our text editor and save the file as fmt-info.txt. Now, let’s
say we wanted to reformat this text to fit a 50-character-wide column. We could do this
by processing the file with fmt and the -w option.

[me@linuxbox ~]$ fmt -w 50 fmt-info.txt | head
 `fmt' reads from the specified FILE arguments
 (or standard input if
none are given), and writes to standard output.

 By default, blank lines, spaces between words,
 and indentation are
preserved in the output; successive input lines
with different indentation are not joined; tabs
are expanded on input and introduced on output.

Well, that’s an awkward result. Perhaps we should actually read this text since it explains

320

Simple Formatting Tools

what’s going on.

By default, blank lines, spaces between words, and indentation are preserved in the
output; successive input lines with different indentation are not joined; tabs are
expanded on input and introduced on output.

So, fmt is preserving the indentation of the first line. Fortunately, fmt provides an op-
tion to correct this.

[me@linuxbox ~]$ fmt -cw 50 fmt-info.txt
 `fmt' reads from the specified FILE arguments
(or standard input if none are given), and writes
to standard output.

 By default, blank lines, spaces between words,
and indentation are preserved in the output;
successive input lines with different indentation
are not joined; tabs are expanded on input and
introduced on output.

 `fmt' prefers breaking lines at the end of a
sentence, and tries to avoid line breaks after
the first word of a sentence or before the
last word of a sentence. A "sentence break"
is defined as either the end of a paragraph
or a word ending in any of `.?!', followed
by two spaces or end of line, ignoring any
intervening parentheses or quotes. Like TeX,
`fmt' reads entire "paragraphs" before choosing
line breaks; the algorithm is a variant of
that given by Donald E. Knuth and Michael F.
Plass in "Breaking Paragraphs Into Lines",
`Software--Practice & Experience' 11, 11
(November 1981), 1119-1184.

That’s much better. By adding the -c option, we now have the desired result.

fmt has some interesting options, as described in Table 21-3.

Table 21-3: fmt Options

Option Description

-c Operate in crown margin mode. This preserves the indentation of
the first two lines of a paragraph. Subsequent lines are aligned with

321

21 – Formatting Output

the indentation of the second line.

-p string Format only those lines beginning with the prefix string. After
formatting, the contents of string are prefixed to each reformatted
line. This option can be used to format text in source code
comments. For example, any programming language or
configuration file that uses a “#” character to delineate a comment
could be formatted by specifying -p '# ' so that only the
comments will be formatted. See the example below.

-s Split-only mode. In this mode, lines will only be split to fit the
specified column width. Short lines will not be joined to fill lines.
This mode is useful when formatting text such as code where
joining is not desired.

-u Perform uniform spacing. This will apply traditional “typewriter-
style” formatting to the text. This means a single space between
words and two spaces between sentences. This mode is useful for
removing “justification,” that is, text that has been padded with
spaces to force alignment on both the left and right margins.

-w width Format text to fit within a column width characters wide. The
default is 75 characters. Note: fmt actually formats lines slightly
shorter than the specified width to allow for line balancing.

The -p option is particularly interesting. With it, we can format selected portions of a
file, provided that the lines to be formatted all begin with the same sequence of charac-
ters. Many programming languages use the pound sign (#) to indicate the beginning of a
comment and thus can be formatted using this option. Let’s create a file that simulates a
program that uses comments.

[me@linuxbox ~]$ cat > fmt-code.txt
This file contains code with comments.

This line is a comment.
Followed by another comment line.
And another.

This, on the other hand, is a line of code.
And another line of code.
And another.

Our sample file contains comments that begin with the string “# ” (a # followed by a

322

Simple Formatting Tools

space) and lines of “code” that do not. Now, using fmt, we can format the comments and
leave the code untouched.

[me@linuxbox ~]$ fmt -w 50 -p '# ' fmt-code.txt
This file contains code with comments.

This line is a comment. Followed by another
comment line. And another.

This, on the other hand, is a line of code.
And another line of code.
And another.

Notice that the adjoining comment lines are joined, while the blank lines and the lines
that do not begin with the specified prefix are preserved.

pr – Format Text for Printing

The pr program is used to paginate text. When printing text, it is often desirable to sepa-
rate the pages of output with several lines of whitespace, to provide a top margin and a
bottom margin for each page. Further, this whitespace can be used to insert a header and
footer on each page.

We’ll demonstrate pr by formatting our distros.txt file into a series of short pages
(only the first two pages are shown).

[me@linuxbox ~]$ pr -l 15 -w 65 distros.txt

2016-12-11 18:27 distros.txt Page 1

SUSE 10.2 12/07/2006
Fedora 10 11/25/2008
SUSE 11.0 06/19/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007

323

21 – Formatting Output

2016-12-11 18:27 distros.txt Page 2

SUSE 10.3 10/04/2007
Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007

In this example, we employ the -l option (for page length) and the -w option (page
width) to define a “page” that is 65 columns wide and 15 lines long. pr paginates the
contents of the distros.txt file, separates each page with several lines of whitespace,
and creates a default header containing the file modification time, filename, and page
number. The pr program provides many options to control page layout. We’ll take a look
at them in Chapter 22, “Printing.”

printf – Format and Print Data

Unlike the other commands in this chapter, the printf command is not used for pipe-
lines (it does not accept standard input) nor does it find frequent application directly on
the command line (it’s mostly used in scripts). So why is it important? Because it is so
widely used.

printf (from the phrase “print formatted”) was originally developed for the C pro-
gramming language and has been implemented in many programming languages includ-
ing the shell. In fact, in bash, printf is a builtin.

printf works like this:

printf “format” arguments

The command is given a string containing a format description, which is then applied to a
list of arguments. The formatted result is sent to standard output. Here is a trivial exam-
ple:

[me@linuxbox ~]$ printf "I formatted the string: %s\n" foo
I formatted the string: foo

The format string may contain literal text (like “I formatted the string:”), escape se-
quences (such as \n, a newline character), and sequences beginning with the % character,

324

Simple Formatting Tools

which are called conversion specifications. In the example above, the conversion specifi-
cation %s is used to format the string “foo” and place it in the command’s output. Here it
is again:

[me@linuxbox ~]$ printf "I formatted '%s' as a string.\n" foo
I formatted 'foo' as a string.

As we can see, the %s conversion specification is replaced by the string “foo” in the com-
mand’s output. The s conversion is used to format string data. There are other specifiers
for other kinds of data. Table 21-4 lists the commonly used data types.

Table 21-4: Common printf Data Type Specifiers

Specifier Description

d Format a number as a signed decimal integer.

f Format and output a floating-point number.

o Format an integer as an octal number.

s Format a string.

x Format an integer as a hexadecimal number using lowercase a to f
where needed.

X Same as x but use uppercase letters.

% Print a literal % symbol (i.e., specify %%)

We’ll demonstrate the effect each of the conversion specifiers on the string 380.

[me@linuxbox ~]$ printf "%d, %f, %o, %s, %x, %X\n" 380 380 380 380
380 380
380, 380.000000, 574, 380, 17c, 17C

Since we specified six conversion specifiers, we must also supply six arguments for
printf to process. The six results show the effect of each specifier.

Several optional components may be added to the conversion specifier to adjust its out-
put. A complete conversion specification may consist of the following:

%[flags][width][.precision]conversion_specification

Multiple optional components, when used, must appear in the order specified earlier to be

325

21 – Formatting Output

properly interpreted. Table 21-5 describes each.

Table 21-5: printf Conversion Specification Components

Component Description

flags There are five different flags:

: Use the “alternate format” for output. This varies by data type.
For o (octal number) conversion, the output is prefixed with 0.
For x and X (hexadecimal number) conversions, the output is
prefixed with 0x or 0X respectively.

0 (zero): Pad the output with zeros. This means that the field will
be filled with leading zeros, as in 000380.

- (dash): Left-align the output. By default, printf right-aligns
output.

‘ ’ (space): Produce a leading space for positive numbers.

+ (plus sign): Sign positive numbers. By default, printf only
signs negative numbers.

width A number specifying the minimum field width.

.precision For floating-point numbers, specify the number of digits of
precision to be output after the decimal point. For string
conversion, precision specifies the number of characters to
output.

Table 21-6 lists some examples of different formats in action.

Table 21-6: printf Conversion Specification Examples

Argument Format Result Notes

380 "%d" 380 Simple formatting of an
integer.

380 "%#x" 0x17c Integer formatted as a
hexadecimal number using
the “alternate format” flag.

380 "%05d" 00380 Integer formatted with
leading zeros (padding)
and a minimum field width

326

Simple Formatting Tools

of five characters.

380 "%05.5f" 380.00000 Number formatted as a
floating-point number with
padding and five decimal
places of precision. Since
the specified minimum
field width (5) is less than
the actual width of the
formatted number, the
padding has no effect.

380 "%010.5f" 0380.00000 By increasing the
minimum field width to 10,
the padding is now visible.

380 "%+d" +380 The + flag signs a positive
number.

380 "%-d" 380 The - flag left-aligns the
formatting.

abcdefghijk "%5s" abcedfghijk A string formatted with a
minimum field width.

abcdefghijk "%.5s" abcde By applying precision to a
string, it is truncated.

Again, printf is used mostly in scripts where it is employed to format tabular data,
rather than on the command line directly. But we can still show how it can be used to
solve various formatting problems. First, let’s output some fields separated by tab charac-
ters.

[me@linuxbox ~]$ printf "%s\t%s\t%s\n" str1 str2 str3
str1 str2 str3

By inserting \t (the escape sequence for a tab), we achieve the desired effect. Next, here
are some numbers with neat formatting:

[me@linuxbox ~]$ printf "Line: %05d %15.3f Result: %+15d\n" 1071
3.14156295 32589
Line: 01071 3.142 Result: +32589

327

21 – Formatting Output

This shows the effect of minimum field width on the spacing of the fields. Or how about
formatting a tiny web page?

[me@linuxbox ~]$ printf "<html>\n\t<head>\n\t\t<title>%s</title>\n
\t</head>\n\t<body>\n\t\t<p>%s</p>\n\t</body>\n</html>\n" "Page Tit
le" "Page Content"
<html>

<head>
<title>Page Title</title>

</head>
<body>

<p>Page Content</p>
</body>

</html>

Document Formatting Systems

So far, we have examined the simple text-formatting tools. These are good for small, sim-
ple tasks, but what about larger jobs? One of the reasons that Unix became a popular op-
erating system among technical and scientific users (aside from providing a powerful
multitasking, multiuser environment for all kinds of software development) is that it of-
fered tools that could be used to produce many types of documents, particularly scientific
and academic publications. In fact, as the GNU documentation describes, document
preparation was instrumental to the development of Unix.

The first version of UNIX was developed on a PDP-7 which was sitting around Bell
Labs. In 1971 the developers wanted to get a PDP-11 for further work on the
operating system. In order to justify the cost for this system, they proposed that they
would implement a document formatting system for the AT&T patents division. This
first formatting program was a reimplementation of McIllroy's `roff', written by J.
F. Ossanna.

Two main families of document formatters dominate the field: those descended from the
original roff program, including nroff and troff, and those based on Donald
Knuth’s TEX (pronounced “tek”) typesetting system. And yes, the dropped “E” in the
middle is part of its name.

The name “roff” is derived from the term “run off” as in, “I’ll run off a copy for you.”
The nroff program is used to format documents for output to devices that use
monospaced fonts, such as character terminals and typewriter-style printers. At the time
of its introduction, this included nearly all printing devices attached to computers. The
later troff program formats documents for output on typesetters, devices used to pro-
duce “camera-ready” type for commercial printing. Most computer printers today are able

328

Document Formatting Systems

to simulate the output of typesetters. The roff family also includes some other programs
that are used to prepare portions of documents. These include eqn (for mathematical
equations) and tbl (for tables).

The TEX system (in stable form) first appeared in 1989 and has, to some degree, dis-
placed troff as the tool of choice for typesetter output. We won’t be covering TEX
here, both because of its complexity (there are entire books about it) and becaues it is not
installed by default on most modern Linux systems.

Tip: For those interested in installing TEX, check out the texlive package
which can be found in most distribution repositories, and the LyX graphical con-
tent editor.

groff

groff is a suite of programs containing the GNU implementation of troff. It also in-
cludes a script that is used to emulate nroff and the rest of the roff family as well.

While roff and its descendants are used to make formatted documents, they do it in a
way that is rather foreign to modern users. Most documents today are produced using
word processors that are able to perform both the composition and the layout of a docu-
ment in a single step. Prior to the advent of the graphical word processor, documents
were often produced in a two-step process involving the use of a text editor to perform
composition, and a processor, such as troff, to apply the formatting. Instructions for
the formatting program were embedded into the composed text through the use of a
markup language. The modern analog for such a process is the web page, which is com-
posed using a text editor of some kind and then rendered by a web browser using HTML
as the markup language to describe the final page layout.

We’re not going to cover groff in its entirety, as many elements of its markup language
deal with rather arcane details of typography. Instead, we will concentrate on one of its
macro packages that remains in wide use. These macro packages condense many of its
low-level commands into a smaller set of high-level commands that make using groff
much easier.

For a moment, let’s consider the humble man page. It lives in the /usr/share/man
directory as a gzip compressed text file. If we were to examine its uncompressed con-
tents, we would see the following (the man page for ls in section 1 is shown):

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | head
.\" DO NOT MODIFY THIS FILE! It was generated by help2man 1.47.3.

329

21 – Formatting Output

.TH LS "1" "January 2018" "GNU coreutils 8.28" "User Commands"

.SH NAME
ls \- list directory contents
.SH SYNOPSIS
.B ls
[\fI\,OPTION\/\fR]... [\fI\,FILE\/\fR]...
.SH DESCRIPTION
.\" Add any additional description here
.PP

Compared to the man page in its normal presentation, we can begin to see a correlation
between the markup language and its results.

[me@linuxbox ~]$ man ls | head
LS(1) User Commands LS(1)

NAME
 ls - list directory contents

SYNOPSIS
 ls [OPTION]... [FILE]...

The reason this is of interest is that man pages are rendered by groff, using the man-
doc macro package. In fact, we can simulate the man command with the following pipe-
line:

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | groff -mandoc -T
ascii | head
LS(1) User Commands LS(1)

NAME
 ls - list directory contents

SYNOPSIS
 ls [OPTION]... [FILE]...

Here we use the groff program with the options set to specify the mandoc macro

330

Document Formatting Systems

package and the output driver for ASCII. groff can produce output in several formats.
If no format is specified, PostScript is output by default.

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | groff -mandoc |
head
%!PS-Adobe-3.0
%%Creator: groff version 1.18.1
%%CreationDate: Thu Feb 5 13:44:37 2009
%%DocumentNeededResources: font Times-Roman
%%+ font Times-Bold
%%+ font Times-Italic
%%DocumentSuppliedResources: procset grops 1.18 1
%%Pages: 4
%%PageOrder: Ascend
%%Orientation: Portrait

We briefly mentioned PostScript in the previous chapter and will again in the next chap-
ter. PostScript is a page description language that is used to describe the contents of a
printed page to a typesetter-like device. If we take the output of our command and store it
to a file (assuming that we are using a graphical desktop with a Desktop directory), an
icon for the output file should appear on the desktop.

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | groff -mandoc >
~/Desktop/ls.ps

By double-clicking the icon, a page viewer should start up and reveal the file in its ren-
dered form, as shown in Figure 5.

331

21 – Formatting Output

What we see is a nicely typeset man page for ls! In fact, it’s possible to convert the Post-
Script file into a Portable Document Format (PDF) file with this command:

[me@linuxbox ~]$ ps2pdf ~/Desktop/foo.ps ~/Desktop/ls.pdf

The ps2pdf program is part of the ghostscript package, which is installed on most
Linux systems that support printing.

Tip: Linux systems often include many command line programs for file format
conversion. They are often named using the convention of format2format. Try
using the command ls /usr/bin/*[[:alpha:]]2[[:alpha:]]* to
identify them. Also try searching for programs named formattoformat.

For our last exercise with groff, we will revisit our old friend distros.txt. This
time, we will use the tbl program, which is used to format tables to typeset our list of
Linux distributions. To do this, we are going to use our earlier sed script to add markup

332

Figure 5: Viewing PostScript output with a page viewer in GNOME

Document Formatting Systems

to a text stream that we will feed to groff.

First, we need to modify our sed script to add the necessary markup elements (called re-
quests in groff) that tbl requires. Using a text editor, we will change distros.sed
to the following:

sed script to produce Linux distributions report

1 i\
.TS\
center box;\
cb s s\
cb cb cb\
l n c.\
Linux Distributions Report\
=\
Name Version Released\
_
s/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/
$ a\
.TE

Note that for the script to work properly, care must been taken to see that the words Name
Version Released are separated by tabs, not spaces. We’ll save the resulting file as
distros-tbl.sed. tbl uses the .TS and .TE requests to start and end the table.
The rows following the .TS request define global properties of the table, which, for our
example, are centered horizontally on the page and surrounded by a box. The remaining
lines of the definition describe the layout of each table row. Now, if we run our report-
generating pipeline again with the new sed script, we’ll get the following:

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-tbl
.sed | groff -t -T ascii
 +------------------------------+
 | Linux Distributions Report |
 +------------------------------+
 | Name Version Released |
 +------------------------------+
 |Fedora 5 2006-03-20 |
 |Fedora 6 2006-10-24 |
 |Fedora 7 2007-05-31 |
 |Fedora 8 2007-11-08 |

333

21 – Formatting Output

 |Fedora 9 2008-05-13 |
 |Fedora 10 2008-11-25 |
 |SUSE 10.1 2006-05-11 |
 |SUSE 10.2 2006-12-07 |
 |SUSE 10.3 2007-10-04 |
 |SUSE 11.0 2008-06-19 |
 |Ubuntu 6.06 2006-06-01 |
 |Ubuntu 6.10 2006-10-26 |
 |Ubuntu 7.04 2007-04-19 |
 |Ubuntu 7.10 2007-10-18 |
 |Ubuntu 8.04 2008-04-24 |
 |Ubuntu 8.10 2008-10-30 |
 +------------------------------+

Adding the -t option to groff instructs it to preprocess the text stream with tbl. Like-
wise, the -T option is used to output to ASCII rather than the default output medium,
PostScript.

The format of the output is the best we can expect if we are limited to the capabilities of a
terminal screen or typewriter-style printer. If we specify PostScript output and graphically
view the output, we get a much more satisfying result, as shown in Figure 6.

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-tbl
.sed | groff -t > ~/Desktop/foo.ps

334

Document Formatting Systems

Summing Up

Given that text is so central to the character of Unix-like operating systems, it makes
sense that there would be many tools that are used to manipulate and format text. As we
have seen, there are! The simple formatting tools like fmt and pr will find many uses in
scripts that produce short documents, while groff (and friends) can be used to write
books. We may never write a technical paper using command line tools (though there are
many people who do!), but it’s good to know that we could.

Further Reading

● groff User’s Guide
http://www.gnu.org/software/groff/manual/

● Writing Papers With nroff Using -me:
http://docs.freebsd.org/44doc/usd/19.memacros/paper.pdf

● -me Reference Manual:

335

Figure 6: Viewing the finished table

http://docs.freebsd.org/44doc/usd/19.memacros/paper.pdf
http://www.gnu.org/software/groff/manual/

21 – Formatting Output

http://docs.freebsd.org/44doc/usd/20.meref/paper.pdf

● Tbl – A Program To Format Tables:
http://plan9.bell-labs.com/10thEdMan/tbl.pdf

● And, of course, try the following articles at Wikipedia:
http://en.wikipedia.org/wiki/TeX
http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/Typesetting

336

http://en.wikipedia.org/wiki/Typesetting
http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/TeX
http://plan9.bell-labs.com/10thEdMan/tbl.pdf
http://docs.freebsd.org/44doc/usd/20.meref/paper.pdf

