
20 – Text Processing

20 – Text Processing

All Unix-like operating systems rely heavily on text files for data storage. So it makes
sense that there are many tools for manipulating text. In this chapter, we will look at pro-
grams that are used to “slice and dice” text. In the next chapter, we will look at more text
processing, focusing on programs that are used to format text for printing and other kinds
of human consumption.

This chapter will revisit some old friends and introduce us to some new ones:

● cat – Concatenate files and print on the standard output

● sort – Sort lines of text files

● uniq – Report or omit repeated lines

● cut – Remove sections from each line of files

● paste – Merge lines of files

● join – Join lines of two files on a common field

● comm – Compare two sorted files line by line

● diff – Compare files line by line

● patch – Apply a diff file to an original

● tr – Translate or delete characters

● sed – Stream editor for filtering and transforming text

● aspell – Interactive spell checker

Applications of Text

So far, we have learned a couple of text editors (nano and vim), looked at a bunch of
configuration files, and have witnessed the output of dozens of commands, all in text. But
what else is text used for? For many things, it turns out.

273

20 – Text Processing

Documents

Many people write documents using plain text formats. While it is easy to see how a
small text file could be useful for keeping simple notes, it is also possible to write large
documents in text format. One popular approach is to write a large document in a text for-
mat and then embed a markup language to describe the formatting of the finished docu-
ment. Many scientific papers are written using this method, as Unix-based text processing
systems were among the first systems that supported the advanced typographical layout
needed by writers in technical disciplines.

Web Pages

The world’s most popular type of electronic document is probably the web page. Web
pages are text documents that use either Hypertext Markup Language (HTML) or Exten-
sible Markup Language (XML) as markup languages to describe the document’s visual
format.

Email

Email is an intrinsically text-based medium. Even non-text attachments are converted
into a text representation for transmission. We can see this for ourselves by downloading
an email message and then viewing it in less. We will see that the message begins with
a header that describes the source of the message and the processing it received during its
journey, followed by the body of the message with its content.

Printer Output

On Unix-like systems, output destined for a printer is sent as plain text or, if the page
contains graphics, is converted into a text format page description language known as
PostScript, which is then sent to a program that generates the graphic dots to be printed.

Program Source Code

Many of the command line programs found on Unix-like systems were created to support
system administration and software development, and text processing programs are no
exception. Many of them are designed to solve software development problems. The rea-
son text processing is important to software developers is that all software starts out as
text. Source code, the part of the program the programmer actually writes, is always in
text format.

Revisiting Some Old Friends

Back in Chapter 6, “Redirection,” we learned about some commands that are able to ac-

274

Revisiting Some Old Friends

cept standard input in addition to command line arguments. We touched on them only
briefly then, but now we will take a closer look at how they can be used to perform text
processing.

cat

The cat program has a number of interesting options. Many of them are used to help
better visualize text content. One example is the -A option, which is used to display non-
printing characters in the text. There are times when we want to know whether control
characters are embedded in our otherwise visible text. The most common of these are tab
characters (as opposed to spaces) and carriage returns, often present as end-of-line char-
acters in MS-DOS-style text files. Another common situation is a file containing lines of
text with trailing spaces.

Let’s create a test file using cat as a primitive word processor. To do this, we’ll just en-
ter the command cat (along with specifying a file for redirected output) and type our
text, followed by Enter to properly end the line and then Ctrl-d, to indicate to cat
that we have reached end-of-file. In this example, we enter a leading tab character and
follow the line with some trailing spaces:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox jumped over the lazy dog.

[me@linuxbox ~]$

Next, we will use cat with the -A option to display the text:

[me@linuxbox ~]$ cat -A foo.txt
^IThe quick brown fox jumped over the lazy dog. $
[me@linuxbox ~]$

As we can see in the results, the tab character in our text is represented by ^I. This is a
common notation that means Ctrl-i which, as it turns out, is the same as a tab charac-
ter. We also see that a $ appears at the true end of the line, indicating that our text con-
tains trailing spaces.

275

20 – Text Processing

MS-DOS Text vs. Unix Text

One of the reasons you may want to use cat to look for non-printing characters
in text is to spot hidden carriage returns. Where do hidden carriage returns come
from? DOS and Windows! Unix and DOS don’t define the end of a line the same
way in text files. Unix ends a line with a linefeed character (ASCII 10) while MS-
DOS and its derivatives use the sequence carriage return (ASCII 13) and linefeed
to terminate each line of text.

There are a several ways to convert files from DOS to Unix format. On many
Linux systems, there are programs called dos2unix and unix2dos, which can
convert text files to and from DOS format. However, if you don’t have dos2u-
nix on your system, don’t worry. The process of converting text from DOS to
Unix format is simple; it involves the removal of the offending carriage returns.
That is easily accomplished by a couple of the programs discussed later in this
chapter.

cat also has options that are used to modify text. The two most prominent are -n, which
numbers lines, and -s, which suppresses the output of multiple blank lines. We can
demonstrate thusly:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox

jumped over the lazy dog.
[me@linuxbox ~]$ cat -ns foo.txt
 1 The quick brown fox
 2
 3 jumped over the lazy dog.
[me@linuxbox ~]$

In this example, we create a new version of our foo.txt test file, which contains two
lines of text separated by two blank lines. After processing by cat with the -ns options,
the extra blank line is removed and the remaining lines are numbered. While this is not
much of a process to perform on text, it is a process.

276

Revisiting Some Old Friends

sort

The sort program sorts the contents of standard input, or one or more files specified on
the command line, and sends the results to standard output. Using the same technique that
we used with cat, we can demonstrate processing of standard input directly from the
keyboard as follows:

[me@linuxbox ~]$ sort > foo.txt
c
b
a
[me@linuxbox ~]$ cat foo.txt
a
b
c

After entering the command, we type the letters c, b, and a, and then we press Ctrl-d
to indicate end-of-file. We then view the resulting file and see that the lines now appear in
sorted order.

Since sort can accept multiple files on the command line as arguments, it is possible to
merge multiple files into a single sorted whole. For example, if we had three text files and
wanted to combine them into a single sorted file, we could do something like this:

sort file1.txt file2.txt file3.txt > final_sorted_list.txt

sort has several interesting options. Table 20-1 contains a partial list:

Table 20-1: Common sort Options

Option Long Option Description

-b --ignore-leading-blanks By default, sorting is performed on
the entire line, starting with the
first character in the line. This
option causes sort to ignore
leading spaces in lines and
calculates sorting based on the first
non-whitespace character on the
line.

-f --ignore-case Make sorting case-insensitive.

277

20 – Text Processing

-n --numeric-sort Perform sorting based on the
numeric evaluation of a string.
Using this option allows sorting to
be performed on numeric values
rather than alphabetic values.

-r --reverse Sort in reverse order. Results are in
descending rather than ascending
order.

-k --key=field1[,field2] Sort based on a key field located
from field1 to field2 rather than the
entire line. See the following
discussion.

-m --merge Treat each argument as the name
of a presorted file. Merge multiple
files into a single sorted result
without performing any additional
sorting.

-o --output=file Send sorted output to file rather
than standard output.

-t --field-separator=char Define the field-separator
character. By default fields are
separated by spaces or tabs.

Although most of these options are pretty self-explanatory, some are not. First, let’s look
at the -n option, used for numeric sorting. With this option, it is possible to sort values
based on numeric values. We can demonstrate this by sorting the results of the du com-
mand to determine the largest users of disk space. Normally, the du command lists the re-
sults of a summary in pathname order.

[me@linuxbox ~]$ du -s /usr/share/* | head
252 /usr/share/aclocal
96 /usr/share/acpi-support
8 /usr/share/adduser
196 /usr/share/alacarte
344 /usr/share/alsa
8 /usr/share/alsa-base
12488 /usr/share/anthy
8 /usr/share/apmd

278

Revisiting Some Old Friends

21440 /usr/share/app-install
48 /usr/share/application-registry

In this example, we pipe the results into head to limit the results to the first 10 lines. We
can produce a numerically sorted list to show the 10 largest consumers of space this way.

[me@linuxbox ~]$ du -s /usr/share/* | sort -nr | head
509940 /usr/share/locale-langpack
242660 /usr/share/doc
197560 /usr/share/fonts
179144 /usr/share/gnome
146764 /usr/share/myspell
144304 /usr/share/gimp
135880 /usr/share/dict
76508 /usr/share/icons
68072 /usr/share/apps
62844 /usr/share/foomatic

By using the n and r options, we produce a reverse numerical sort, with the largest val-
ues appearing first in the results. This sort works because the numerical values occur at
the beginning of each line. But what if we want to sort a list based on some value found
within the line? For example, here are the results of ls -l:

[me@linuxbox ~]$ ls -l /usr/bin | head
total 152948
-rwxr-xr-x 1 root root 34824 2016-04-04 02:42 [
-rwxr-xr-x 1 root root 101556 2007-11-27 06:08 a2p
-rwxr-xr-x 1 root root 13036 2016-02-27 08:22 aconnect
-rwxr-xr-x 1 root root 10552 2007-08-15 10:34 acpi
-rwxr-xr-x 1 root root 3800 2016-04-14 03:51 acpi_fakekey
-rwxr-xr-x 1 root root 7536 2016-04-19 00:19 acpi_listen
-rwxr-xr-x 1 root root 3576 2016-04-29 07:57 addpart
-rwxr-xr-x 1 root root 20808 2016-01-03 18:02 addr2line
-rwxr-xr-x 1 root root 489704 2016-10-09 17:02 adept_batch

Ignoring, for the moment, that ls can sort its results by size, we could use sort to sort
this list by file size, as well.

[me@linuxbox ~]$ ls -l /usr/bin | sort -nrk 5 | head

279

20 – Text Processing

-rwxr-xr-x 1 root root 8234216 2016-04-07 17:42 inkscape
-rwxr-xr-x 1 root root 8222692 2016-04-07 17:42 inkview
-rwxr-xr-x 1 root root 3746508 2016-03-07 23:45 gimp-2.4
-rwxr-xr-x 1 root root 3654020 2016-08-26 16:16 quanta
-rwxr-xr-x 1 root root 2928760 2016-09-10 14:31 gdbtui
-rwxr-xr-x 1 root root 2928756 2016-09-10 14:31 gdb
-rwxr-xr-x 1 root root 2602236 2016-10-10 12:56 net
-rwxr-xr-x 1 root root 2304684 2016-10-10 12:56 rpcclient
-rwxr-xr-x 1 root root 2241832 2016-04-04 05:56 aptitude
-rwxr-xr-x 1 root root 2202476 2016-10-10 12:56 smbcacls

Many uses of sort involve the processing of tabular data, such as the results of the pre-
vious ls command. If we apply database terminology to the previous table, we would
say that each row is a record and that each record consists of multiple fields, such as the
file attributes, link count, filename, file size, and so on. sort is able to process individ-
ual fields. In database terms, we are able to specify one or more key fields to use as sort
keys. In the previous example, we specify the n and r options to perform a reverse nu-
merical sort and specify -k 5 to make sort use the fifth field as the key for sorting.

The k option is interesting and has many features, but first we need to talk about how
sort defines fields. Let’s consider the following simple text file consisting of a single
line containing the author’s name:

William Shotts

By default, sort sees this line as having two fields. The first field contains these charac-
ters:

“William”

The second field contains these characters:

“Shotts”

This means that whitespace characters (spaces and tabs) are used as delimiters between
fields and that the delimiters are included in the field when sorting is performed.

Looking again at a line from our ls output, as follows, we can see that a line contains
eight fields and that the fifth field is the file size:

-rwxr-xr-x 1 root root 8234216 2016-04-07 17:42 inkscape

280

Revisiting Some Old Friends

For our next series of experiments, let’s consider the following file containing the history
of three popular Linux distributions released from 2006 to 2008. Each line in the file has
three fields: the distribution name, version number, and date of release in MM/DD/
YYYY format.

SUSE 10.2 12/07/2006
Fedora 10 11/25/2008
SUSE 11.0 06/19/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
SUSE 10.3 10/04/2007
Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007
SUSE 10.1 05/11/2006
Fedora 6 10/24/2006
Fedora 9 05/13/2008
Ubuntu 6.06 06/01/2006
Ubuntu 8.10 10/30/2008
Fedora 5 03/20/2006

Using a text editor (perhaps vim), we’ll enter this data and name the resulting file dis-
tros.txt.

Next, we’ll try sorting the file and observe these results:

[me@linuxbox ~]$ sort distros.txt
Fedora 10 11/25/2008
Fedora 5 03/20/2006
Fedora 6 10/24/2006
Fedora 7 05/31/2007
Fedora 8 11/08/2007
Fedora 9 05/13/2008
SUSE 10.1 05/11/2006
SUSE 10.2 12/07/2006
SUSE 10.3 10/04/2007
SUSE 11.0 06/19/2008
Ubuntu 6.06 06/01/2006
Ubuntu 6.10 10/26/2006
Ubuntu 7.04 04/19/2007
Ubuntu 7.10 10/18/2007

281

20 – Text Processing

Ubuntu 8.04 04/24/2008
Ubuntu 8.10 10/30/2008

Well, it mostly worked. The problem occurs in the sorting of the Fedora version numbers.
Since 1 comes before 5 in the character set, version 10 ends up at the top while version 9
falls to the bottom.

To fix this problem, we are going to have to sort on multiple keys. We want to perform an
alphabetic sort on the first field and then a numeric sort on the second field. sort allows
multiple instances of the -k option so that multiple sort keys can be specified. In fact, a
key may include a range of fields. If no range is specified (as has been the case with our
previous examples), sort uses a key that begins with the specified field and extends to
the end of the line. Here is the syntax for our multi-key sort:

[me@linuxbox ~]$ sort --key=1,1 --key=2n distros.txt
Fedora 5 03/20/2006
Fedora 6 10/24/2006
Fedora 7 05/31/2007
Fedora 8 11/08/2007
Fedora 9 05/13/2008
Fedora 10 11/25/2008
SUSE 10.1 05/11/2006
SUSE 10.2 12/07/2006
SUSE 10.3 10/04/2007
SUSE 11.0 06/19/2008
Ubuntu 6.06 06/01/2006
Ubuntu 6.10 10/26/2006
Ubuntu 7.04 04/19/2007
Ubuntu 7.10 10/18/2007
Ubuntu 8.04 04/24/2008
Ubuntu 8.10 10/30/2008

Though we used the long form of the option for clarity, -k 1,1 -k 2n would be ex-
actly equivalent. In the first instance of the key option, we specified a range of fields to
include in the first key. Since we wanted to limit the sort to just the first field, we speci -
fied 1,1 which means “start at field 1 and end at field 1.” In the second instance, we
specified 2n, which means field 2 is the sort key and that the sort should be numeric. An
option letter may be included at the end of a key specifier to indicate the type of sort to be
performed. These option letters are the same as the global options for the sort program:
b (ignore leading blanks), n (numeric sort), r (reverse sort), and so on.

The third field in our list contains a date in an inconvenient format for sorting. On com-

282

Revisiting Some Old Friends

puters, dates are usually formatted in YYYY-MM-DD order to make chronological sort-
ing easy, but ours are in the American format of MM/DD/YYYY. How can we sort this
list in chronological order?

Fortunately, sort provides a way. The key option allows specification of offsets within
fields, so we can define keys within fields.

[me@linuxbox ~]$ sort -k 3.7nbr -k 3.1nbr -k 3.4nbr distros.txt
Fedora 10 11/25/2008
Ubuntu 8.10 10/30/2008
SUSE 11.0 06/19/2008
Fedora 9 05/13/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
Ubuntu 7.10 10/18/2007
SUSE 10.3 10/04/2007
Fedora 7 05/31/2007
Ubuntu 7.04 04/19/2007
SUSE 10.2 12/07/2006
Ubuntu 6.10 10/26/2006
Fedora 6 10/24/2006
Ubuntu 6.06 06/01/2006
SUSE 10.1 05/11/2006
Fedora 5 03/20/2006

By specifying -k 3.7, we instruct sort to use a sort key that begins at the seventh
character within the third field, which corresponds to the start of the year. Likewise, we
specify -k 3.1 and -k 3.4 to isolate the month and day portions of the date. We also
add the n and r options to achieve a reverse numeric sort. The b option is included to
suppress the leading spaces (whose numbers vary from line to line, thereby affecting the
outcome of the sort) in the date field.

Some files don’t use tabs and spaces as field delimiters; for example, here’s the /etc/
passwd file:

[me@linuxbox ~]$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh

283

20 – Text Processing

man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh

The fields in this file are delimited with colons (:), so how would we sort this file using a
key field? sort provides the -t option to define the field separator character. To sort the
passwd file on the seventh field (the account’s default shell), we could do this:

[me@linuxbox ~]$ sort -t ':' -k 7 /etc/passwd | head
me:x:1001:1001:Myself,,,:/home/me:/bin/bash
root:x:0:0:root:/root:/bin/bash
dhcp:x:101:102::/nonexistent:/bin/false
gdm:x:106:114:Gnome Display Manager:/var/lib/gdm:/bin/false
hplip:x:104:7:HPLIP system user,,,:/var/run/hplip:/bin/false
klog:x:103:104::/home/klog:/bin/false
messagebus:x:108:119::/var/run/dbus:/bin/false
polkituser:x:110:122:PolicyKit,,,:/var/run/PolicyKit:/bin/false
pulse:x:107:116:PulseAudio daemon,,,:/var/run/pulse:/bin/false

By specifying the colon character as the field separator, we can sort on the seventh field.

uniq

Compared to sort, the uniq program is lightweight. uniq performs a seemingly triv-
ial task. When given a sorted file (or standard input), it removes any duplicate lines and
sends the results to standard output. It is often used in conjunction with sort to clean the
output of duplicates.

Tip: While uniq is a traditional Unix tool often used with sort, the GNU ver-
sion of sort supports a -u option, which removes duplicates from the sorted
output.

Let’s make a text file to try this as shown here:

[me@linuxbox ~]$ cat > foo.txt
a
b
c

284

Revisiting Some Old Friends

a
b
c

Remember to type Ctrl-d to terminate standard input. Now, if we run uniq on our text
file, we get this:

[me@linuxbox ~]$ uniq foo.txt
a
b
c
a
b
c

The results are no different from our original file; the duplicates were not removed. For
uniq to do its job, the input must be sorted first.

[me@linuxbox ~]$ sort foo.txt | uniq
a
b
c

This is because uniq only removes duplicate lines that are adjacent to each other.

uniq has several options. Table 20-2 lists the common ones.

Table 20-2: Common uniq Options

Option Long Option Description

-c --count Output a list of duplicate lines preceded by
the number of times the line occurs.

-d --repeated Output only repeated lines, rather than
unique lines.

-f n --skip-fields=n Ignore n leading fields in each line. Fields
are separated by whitespace as they are in
sort; however, unlike sort, uniq has
no option for setting an alternate field
separator.

285

20 – Text Processing

-i --ignore-case Ignore case during the line comparisons.

-s n --skip-chars=n Skip (ignore) the leading n characters of
each line.

-u --unique Output only unique lines. Lines with
duplicates are ignored.

Here we see uniq used to report the number of duplicates found in our text file, using
the -c option:

[me@linuxbox ~]$ sort foo.txt | uniq -c
 2 a
 2 b
 2 c

Slicing and Dicing

The next three programs we will discuss are used to peel columns of text out of files and
recombine them in useful ways.

cut

The cut program is used to extract a section of text from a line and output the extracted
section to standard output. It can accept multiple file arguments or input from standard in-
put.

Specifying the section of the line to be extracted is somewhat awkward and is specified
using the options listed in Table 20-3.

Table 20-3: cut Selection Options

Option Long Option Description

-c list --characters=list Extract the portion of the
line defined by list. The list
may consist of one or more
comma-separated numerical
ranges.

-f list --fields=list Extract one or more fields
from the line as defined by
list. The list may contain one

286

Slicing and Dicing

or more fields or field ranges
separated by commas.

-d delim --delimeter=delim When -f is specified, use
delim as the field delimiting
character. By default, fields
must be separated by a
single tab character.

--complement Extract the entire line of
text, except for those
portions specified by -c
and/or -f.

As we can see, the way cut extracts text is rather inflexible. cut is best used to extract
text from files that are produced by other programs, rather than text directly typed by hu-
mans. We’ll take a look at our distros.txt file to see whether it is “clean” enough to
be a good specimen for our cut examples. If we use cat with the -A option, we can see
whether the file meets our requirements of tab-separated fields:

[me@linuxbox ~]$ cat -A distros.txt
SUSE^I10.2^I12/07/2006$
Fedora^I10^I11/25/2008$
SUSE^I11.0^I06/19/2008$
Ubuntu^I8.04^I04/24/2008$
Fedora^I8^I11/08/2007$
SUSE^I10.3^I10/04/2007$
Ubuntu^I6.10^I10/26/2006$
Fedora^I7^I05/31/2007$
Ubuntu^I7.10^I10/18/2007$
Ubuntu^I7.04^I04/19/2007$
SUSE^I10.1^I05/11/2006$
Fedora^I6^I10/24/2006$
Fedora^I9^I05/13/2008$
Ubuntu^I6.06^I06/01/2006$
Ubuntu^I8.10^I10/30/2008$
Fedora^I5^I03/20/2006$

It looks good. There are no embedded spaces, just single tab characters between the
fields. Since the file uses tabs rather than spaces, we’ll use the -f option to extract a
field.

287

20 – Text Processing

[me@linuxbox ~]$ cut -f 3 distros.txt
12/07/2006
11/25/2008
06/19/2008
04/24/2008
11/08/2007
10/04/2007
10/26/2006
05/31/2007
10/18/2007
04/19/2007
05/11/2006
10/24/2006
05/13/2008
06/01/2006
10/30/2008
03/20/2006

Because our distros file is tab-delimited, it is best to use cut to extract fields rather
than characters. This is because when a file is tab-delimited, it is unlikely that each line
will contain the same number of characters, which makes calculating character positions
within the line difficult or impossible. In our previous example, however, we now have
extracted a field that luckily contains data of identical length, so we can show how char-
acter extraction works by extracting the year from each line.

[me@linuxbox ~]$ cut -f 3 distros.txt | cut -c 7-10
2006
2008
2008
2008
2007
2007
2006
2007
2007
2007
2006
2006
2008
2006
2008
2006

288

Slicing and Dicing

By running cut a second time on our list, we are able to extract character positions 7
through 10, which corresponds to the year in our date field. The 7-10 notation is an ex-
ample of a range. The cut man page contains a complete description of how ranges can
be specified.

Expanding Tabs

Our distros.txt file is ideally formatted for extracting fields using cut. But
what if we wanted a file that could be fully manipulated with cut by characters,
rather than fields? This would require us to replace the tab characters within the
file with the corresponding number of spaces. Fortunately, the GNU Coreutils
package includes a tool for that. Named expand, this program accepts either one
or more file arguments or standard input and outputs the modified text to standard
output.

If we process our distros.txt file with expand, we can use cut -c to ex-
tract any range of characters from the file. For example, we could use the follow-
ing command to extract the year of release from our list by expanding the file and
using cut to extract every character from the 23rd position to the end of the line:

[me@linuxbox ~]$ expand distros.txt | cut -c 23-

Coreutils also provides the unexpand program to substitute tabs for spaces.

When working with fields, it is possible to specify a different field delimiter rather than
the tab character. Here we will extract the first field from the /etc/passwd file:

[me@linuxbox ~]$ cut -d ':' -f 1 /etc/passwd | head
root
daemon
bin
sys
sync
games
man
lp
mail
news

Using the -d option, we are able to specify the colon character as the field delimiter.

289

20 – Text Processing

paste

The paste command does the opposite of cut. Rather than extracting a column of text
from a file, it adds one or more columns of text to a file. It does this by reading multiple
files and combining the fields found in each file into a single stream on standard output.
Like cut, paste accepts multiple file arguments and/or standard input. To demonstrate
how paste operates, we will perform some surgery on our distros.txt file to pro-
duce a chronological list of releases.

From our earlier work with sort, we will first produce a list of distros sorted by date
and store the result in a file called distros-by-date.txt.

[me@linuxbox ~]$ sort -k 3.7nbr -k 3.1nbr -k 3.4nbr distros.txt > dis
tros-by-date.txt

Next, we will use cut to extract the first two fields from the file (the distro name and
version) and store that result in a file named distro-versions.txt.

[me@linuxbox ~]$ cut -f 1,2 distros-by-date.txt > distros-versions.t
xt
[me@linuxbox ~]$ head distros-versions.txt
Fedora 10
Ubuntu 8.10
SUSE 11.0
Fedora 9
Ubuntu 8.04
Fedora 8
Ubuntu 7.10
SUSE 10.3
Fedora 7
Ubuntu 7.04

The final piece of preparation is to extract the release dates and store them in a file named
distro-dates.txt.

[me@linuxbox ~]$ cut -f 3 distros-by-date.txt > distros-dates.txt
[me@linuxbox ~]$ head distros-dates.txt
11/25/2008
10/30/2008
06/19/2008

290

Slicing and Dicing

05/13/2008
04/24/2008
11/08/2007
10/18/2007
10/04/2007
05/31/2007
04/19/2007

We now have the parts we need. To complete the process, use paste to put the column
of dates ahead of the distro names and versions, thus creating a chronological list. This is
done simply by using paste and ordering its arguments in the desired arrangement.

[me@linuxbox ~]$ paste distros-dates.txt distros-versions.txt
11/25/2008 Fedora 10
10/30/2008 Ubuntu 8.10
06/19/2008 SUSE 11.0
05/13/2008 Fedora 9
04/24/2008 Ubuntu 8.04
11/08/2007 Fedora 8
10/18/2007 Ubuntu 7.10
10/04/2007 SUSE 10.3
05/31/2007 Fedora 7
04/19/2007 Ubuntu 7.04
12/07/2006 SUSE 10.2
10/26/2006 Ubuntu 6.10
10/24/2006 Fedora 6
06/01/2006 Ubuntu 6.06
05/11/2006 SUSE 10.1
03/20/2006 Fedora 5

join

In some ways, join is like paste in that it adds columns to a file, but it uses a unique
way to do it. A join is an operation usually associated with relational databases where
data from multiple tables with a shared key field is combined to form a desired result.
The join program performs the same operation. It joins data from multiple files based
on a shared key field.

To see how a join operation is used in a relational database, let’s imagine a small database
consisting of two tables, each containing a single record. The first table, called CUS-
TOMERS, has three fields: a customer number (CUSTNUM), the customer’s first name

291

20 – Text Processing

(FNAME), and the customer’s last name (LNAME):

CUSTNUM FNAME LNAME
======== ===== ======
4681934 John Smith

The second table is called ORDERS and contains four fields: an order number (ORDER-
NUM), the customer number (CUSTNUM), the quantity (QUAN), and the item ordered
(ITEM).

ORDERNUM CUSTNUM QUAN ITEM
======== ======= ==== ====
3014953305 4681934 1 Blue Widget

Note that both tables share the field CUSTNUM. This is important, because it allows a
relationship between the tables.

Performing a join operation would allow us to combine the fields in the two tables to
achieve a useful result, such as preparing an invoice. Using the matching values in the
CUSTNUM fields of both tables, a join operation could produce the following:

FNAME LNAME QUAN ITEM
===== ===== ==== ====
John Smith 1 Blue Widget

To demonstrate the join program, we’ll need to make a couple of files with a shared
key. To do this, we will use our distros-by-date.txt file. From this file, we will
construct two additional files. One contains the release dates (which will be our shared
key for this demonstration) and the release names, as shown here

[me@linuxbox ~]$ cut -f 1,1 distros-by-date.txt > distros-names.txt
[me@linuxbox ~]$ paste distros-dates.txt distros-names.txt > distros-
key-names.txt
[me@linuxbox ~]$ head distros-key-names.txt
11/25/2008 Fedora
10/30/2008 Ubuntu
06/19/2008 SUSE
05/13/2008 Fedora
04/24/2008 Ubuntu
11/08/2007 Fedora
10/18/2007 Ubuntu
10/04/2007 SUSE
05/31/2007 Fedora
04/19/2007 Ubuntu

The second file contains the release dates and the version numbers, as shown here:

292

Slicing and Dicing

[me@linuxbox ~]$ cut -f 2,2 distros-by-date.txt > distros-vernums.txt
[me@linuxbox ~]$ paste distros-dates.txt distros-vernums.txt > distro
s-key-vernums.txt
[me@linuxbox ~]$ head distros-key-vernums.txt
11/25/2008 10
10/30/2008 8.10
06/19/2008 11.0
05/13/2008 9
04/24/2008 8.04
11/08/2007 8
10/18/2007 7.10
10/04/2007 10.3
05/31/2007 7
04/19/2007 7.04

We now have two files with a shared key (the “release date” field). It is important to point
out that the files must be sorted on the key field for join to work properly.

[me@linuxbox ~]$ join distros-key-names.txt distros-key-vernums.txt |
head
11/25/2008 Fedora 10
10/30/2008 Ubuntu 8.10
06/19/2008 SUSE 11.0
05/13/2008 Fedora 9
04/24/2008 Ubuntu 8.04
11/08/2007 Fedora 8
10/18/2007 Ubuntu 7.10
10/04/2007 SUSE 10.3
05/31/2007 Fedora 7
04/19/2007 Ubuntu 7.04

Note also that, by default, join uses whitespace as the input field delimiter and a single
space as the output field delimiter. This behavior can be modified by specifying options.
See the join man page for details.

Comparing Text

It is often useful to compare versions of text files. For system administrators and software
developers, this is particularly important. A system administrator may, for example, need
to compare an existing configuration file to a previous version to diagnose a system prob-
lem. Likewise, a programmer frequently needs to see what changes have been made to

293

20 – Text Processing

programs over time.

comm

The comm program compares two text files and displays the lines that are unique to each
one and the lines they have in common. To demonstrate, we will create two nearly identi-
cal text files using cat.

[me@linuxbox ~]$ cat > file1.txt
a
b
c
d
[me@linuxbox ~]$ cat > file2.txt
b
c
d
e

Next, we will compare the two files using comm:

[me@linuxbox ~]$ comm file1.txt file2.txt
a

b
c
d

e

As we can see, comm produces three columns of output. The first column contains lines
unique to the first file argument, the second column contains the lines unique to the sec-
ond file argument, and the third column contains the lines shared by both files. comm
supports options in the form -n, where n is either 1, 2, or 3. When used, these options
specify which columns to suppress. For example, if we wanted to only output the lines
shared by both files, we would suppress the output of the first and second columns.

[me@linuxbox ~]$ comm -12 file1.txt file2.txt
b
c
d

294

Comparing Text

diff

Like the comm program, diff is used to detect the differences between files. However,
diff is a much more complex tool, supporting many output formats and the ability to
process large collections of text files at once. diff is often used by software developers
to examine changes between different versions of program source code and thus has the
ability to recursively examine directories of source code, often referred to as source trees.
One common use for diff is the creation of diff files or patches that are used by pro-
grams such as patch (which we’ll discuss shortly) to convert one version of a file (or
files) to another version.

If we use diff to look at our previous example files:

[me@linuxbox ~]$ diff file1.txt file2.txt
1d0
< a
4a4
> e

we see its default style of output: a terse description of the differences between the two
files. In the default format, each group of changes is preceded by a change command in
the form of range operation range to describe the positions and types of changes required
to convert the first file to the second file, as outlined in Table 20-4.

Table 20-4: diff Change Commands

Change Description

r1ar2 Append the lines at the position r2 in the second file to the position
r1 in the first file.

r1cr2 Change (replace) the lines at position r1 with the lines at the
position r2 in the second file.

r1dr2 Delete the lines in the first file at position r1, which would have
appeared at range r2 in the second file

In this format, a range is a comma-separated list of the starting line and the ending line.
While this format is the default (mostly for POSIX compliance and backward compatibil-
ity with traditional Unix versions of diff), it is not as widely used as other, optional for-
mats. Two of the more popular formats are the context format and the unified format.

When viewed using the context format (the -c option), we will see this:

295

20 – Text Processing

[me@linuxbox ~]$ diff -c file1.txt file2.txt
*** file1.txt2008-12-23 06:40:13.000000000 -0500
--- file2.txt2008-12-23 06:40:34.000000000 -0500

*** 1,4 ****
- a
 b
 c
 d
--- 1,4 ----
 b
 c
 d
+ e

The output begins with the names of the two files and their timestamps. The first file is
marked with asterisks and the second file is marked with dashes. Throughout the remain-
der of the listing, these markers will signify their respective files. Next, we see groups of
changes, including the default number of surrounding context lines. In the first group, we
see this:

*** 1,4 ***

which indicates lines 1 through 4 in the first file. Later we see this:

--- 1,4 ---

which indicates lines 1 through 4 in the second file. Within a change group, lines begin
with one of four indicators shown in Table 20-5.

Table 20-5: diff Context Format Change Indicators

Indicator Meaning

blank A line shown for context. It does not indicate a difference between
the two files.

- A line deleted. This line will appear in the first file but not in the
second file.

+ A line added. This line will appear in the second file but not in the
first file.

! A line changed. The two versions of the line will be displayed, each
in its respective section of the change group.

296

Comparing Text

The unified format is similar to the context format but is more concise. It is specified
with the -u option.

[me@linuxbox ~]$ diff -u file1.txt file2.txt
--- file1.txt2008-12-23 06:40:13.000000000 -0500
+++ file2.txt2008-12-23 06:40:34.000000000 -0500
@@ -1,4 +1,4 @@
-a
 b
 c
 d
+e

The most notable difference between the context and unified formats is the elimination of
the duplicated lines of context, making the results of the unified format shorter than those
of the context format. In our previous example, we see file timestamps like those of the
context format, followed by the string @@ -1,4 +1,4 @@. This indicates the lines in
the first file and the lines in the second file described in the change group. Following this
are the lines themselves, with the default three lines of context. Each line starts with one
of three possible characters listed in Table 20-6.

Table 20-6: diff Unified Format Change Indicators

Character Meaning

blank This line is shared by both files.

- This line was removed from the first file.

+ This line was added to the first file.

patch

The patch program is used to apply changes to text files. It accepts output from diff
and is generally used to convert older version files into newer versions. Let’s consider a
famous example. The Linux kernel is developed by a large, loosely organized team of
contributors who submit a constant stream of small changes to the source code. The
Linux kernel consists of several million lines of code, while the changes that are made by
one contributor at one time are quite small. It makes no sense for a contributor to send
each developer an entire kernel source tree each time a small change is made. Instead, a
diff file is submitted. The diff file contains the change from the previous version of the
kernel to the new version with the contributor's changes. The receiver then uses the

297

20 – Text Processing

patch program to apply the change to his own source tree. Using diff/patch offers
two significant advantages.

1. The diff file is small, compared to the full size of the source tree.

2. The diff file concisely shows the change being made, allowing reviewers of the
patch to quickly evaluate it.

Of course, diff/patch will work on any text file, not just source code. It would be
equally applicable to configuration files or any other text.

To prepare a diff file for use with patch, the GNU documentation (see Further Reading
below) suggests using diff as follows:

diff -Naur old_file new_file > diff_file

where old_file and new_file are either single files or directories containing files. The r
option supports recursion of a directory tree.

Once the diff file has been created, we can apply it to patch the old file into the new file.

patch < diff_file

We’ll demonstrate with our test file.

[me@linuxbox ~]$ diff -Naur file1.txt file2.txt > patchfile.txt
[me@linuxbox ~]$ patch < patchfile.txt
patching file file1.txt
[me@linuxbox ~]$ cat file1.txt
b
c
d
e

In this example, we created a diff file named patchfile.txt and then used the
patch program to apply the patch. Note that we did not have to specify a target file to
patch, as the diff file (in unified format) already contains the filenames in the header.
Once the patch is applied, we can see that file1.txt now matches file2.txt.

patch has a large number of options, and there are additional utility programs that can
be used to analyze and edit patches.

Editing on the Fly

Our experience with text editors has been largely interactive, meaning that we manually
move a cursor around and then type our changes. However, there are non-interactive
ways to edit text as well. It’s possible, for example, to apply a set of changes to multiple

298

Editing on the Fly

files with a single command.

tr

The tr program is used to transliterate characters. We can think of this as a sort of char-
acter-based search-and-replace operation. Transliteration is the process of changing char-
acters from one alphabet to another. For example, converting characters from lowercase
to uppercase is transliteration. We can perform such a conversion with tr as follows:

[me@linuxbox ~]$ echo "lowercase letters" | tr a-z A-Z
LOWERCASE LETTERS

As we can see, tr operates on standard input, and outputs its results on standard output.
tr accepts two arguments: a set of characters to convert from and a corresponding set of
characters to convert to. Character sets may be expressed in one of three ways.

1. An enumerated list. For example, ABCDEFGHIJKLMNOPQRSTUVWXYZ

2. A character range. For example, A-Z. Note that this method is sometimes subject
to the same issues as other commands, because of the locale collation order, and
thus should be used with caution.

3. POSIX character classes. For example, [:upper:].

In most cases, both character sets should be of equal length; however, it is possible for
the first set to be larger than the second, particularly if we want to convert multiple char-
acters to a single character.

[me@linuxbox ~]$ echo "lowercase letters" | tr [:lower:] A
AAAAAAAAA AAAAAAA

In addition to transliteration, tr allows characters to simply be deleted from the input
stream. Earlier in this chapter, we discussed the problem of converting MS-DOS text files
to Unix-style text. To perform this conversion, carriage return characters need to be re-
moved from the end of each line. This can be performed with tr as follows:

tr -d '\r' < dos_file > unix_file

where dos_file is the file to be converted and unix_file is the result. This form of the com-
mand uses the escape sequence \r to represent the carriage return character. To see a
complete list of the sequences and character classes tr supports, try the following:

299

20 – Text Processing

[me@linuxbox ~]$ tr --help

ROT13: The Not-So-Secret Decoder Ring

One amusing use of tr is to perform ROT13 encoding of text. ROT13 is a trivial
type of encryption based on a simple substitution cipher. Calling ROT13 “encryp-
tion” is being generous; “text obfuscation” is more accurate. It is used sometimes
on text to obscure potentially offensive content. The method simply moves each
character 13 places up the alphabet. Since this is half way up the possible 26 char-
acters, performing the algorithm a second time on the text restores it to its original
form. Use the following to perform this encoding with tr:

echo "secret text" | tr a-zA-Z n-za-mN-ZA-M
frperg grkg

Performing the same procedure a second time results in the following translation:

echo "frperg grkg" | tr a-zA-Z n-za-mN-ZA-M
secret text

A number of email programs and Usenet news readers support ROT13 encoding.
Wikipedia contains a good article on the subject:

http://en.wikipedia.org/wiki/ROT13

tr can perform another trick, too. Using the -s option, tr can “squeeze” (delete) re-
peated instances of a character.

[me@linuxbox ~]$ echo "aaabbbccc" | tr -s ab
abccc

Here we have a string containing repeated characters. By specifying the set “ab” to tr,
we eliminate the repeated instances of the letters in the set, while leaving the character
that is missing from the set (“c”) unchanged. Note that the repeating characters must be
adjoining. If they are not, the squeezing will have no effect.

[me@linuxbox ~]$ echo "abcabcabc" | tr -s ab
abcabcabc

300

http://en.wikipedia.org/wiki/ROT13

Editing on the Fly

sed

The name sed is short for stream editor. It performs text editing on a stream of text, ei-
ther a set of specified files or standard input. sed is a powerful and somewhat complex
program (there are entire books about it), so we will not cover it completely here.

In general, the way sed works is that it is given either a single editing command (on the
command line) or the name of a script file containing multiple commands, and it then
performs these commands upon each line in the stream of text. Here is a simple example
of sed in action:

[me@linuxbox ~]$ echo "front" | sed 's/front/back/'
back

In this example, we produce a one-word stream of text using echo and pipe it into sed.
sed, in turn, carries out the instruction s/front/back/ upon the text in the stream
and produces the output “back” as a result. We can also recognize this command as re-
sembling the “substitution” (search-and-replace) command in vi.

Commands in sed begin with a single letter. In the previous example, the substitution
command is represented by the letter s and is followed by the search-and-replace strings,
separated by the slash character as a delimiter. The choice of the delimiter character is ar-
bitrary. By convention, the slash character is often used, but sed will accept any charac-
ter that immediately follows the command as the delimiter. We could perform the same
command this way:

[me@linuxbox ~]$ echo "front" | sed 's_front_back_'
back

By using the underscore character immediately after the command, it becomes the delim-
iter. The ability to set the delimiter can be used to make commands more readable, as we
shall see.

Most commands in sed may be preceded by an address, which specifies which line(s) of
the input stream will be edited. If the address is omitted, then the editing command is car-
ried out on every line in the input stream. The simplest form of address is a line number.
We can add one to our example.

[me@linuxbox ~]$ echo "front" | sed '1s/front/back/'
back

301

20 – Text Processing

Adding the address 1 to our command causes our substitution to be performed on the first
line of our one-line input stream. If we specify another number and we see that the edit-
ing is not carried out, since our input stream does not have a line 2.

[me@linuxbox ~]$ echo "front" | sed '2s/front/back/'
front

Addresses may be expressed in many ways. Table 20-7 lists the most common.

Table 20-7: sed Address Notation

Address Description

n A line number where n is a positive integer.

$ The last line.

/regexp/ Lines matching a POSIX basic regular expression. Note that the
regular expression is delimited by slash characters. Optionally,
the regular expression may be delimited by an alternate
character, by specifying the expression with \cregexpc,
where c is the alternate character.

addr1,addr2 A range of lines from addr1 to addr2, inclusive. Addresses may
be any of the single address forms listed earlier.

first~step Match the line represented by the number first, then each
subsequent line at step intervals. For example 1~2 refers to
each odd numbered line, and 5~5 refers to the fifth line and
every fifth line thereafter.

addr1,+n Match addr1 and the following n lines.

addr! Match all lines except addr, which may be any of the forms
listed earlier.

We’ll demonstrate different kinds of addresses using the distros.txt file from earlier
in this chapter. First, here’s a range of line numbers:

[me@linuxbox ~]$ sed -n '1,5p' distros.txt
SUSE 10.2 12/07/2006
Fedora 10 11/25/2008
SUSE 11.0 06/19/2008

302

Editing on the Fly

Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007

In this example, we print a range of lines, starting with line 1 and continuing to line 5. To
do this, we use the p command, which simply causes a matched line to be printed. For
this to be effective, however, we must include the option -n (the “no auto-print” option)
to cause sed not to print every line by default.

Next, we’ll try a regular expression.

[me@linuxbox ~]$ sed -n '/SUSE/p' distros.txt
SUSE 10.2 12/07/2006
SUSE 11.0 06/19/2008
SUSE 10.3 10/04/2007
SUSE 10.1 05/11/2006

By including the slash-delimited regular expression /SUSE/, we are able to isolate the
lines containing it in much the same manner as grep.

Finally, we’ll try negation by adding an exclamation point (!) to the address.

[me@linuxbox ~]$ sed -n '/SUSE/!p' distros.txt
Fedora 10 11/25/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007
Fedora 6 10/24/2006
Fedora 9 05/13/2008
Ubuntu 6.06 06/01/2006
Ubuntu 8.10 10/30/2008
Fedora 5 03/20/2006

Here we see the expected result: all the lines in the file except the ones matched by the
regular expression.

So far, we’ve looked at two of the sed editing commands, s and p. Table 20-8 provides
a more complete list of the basic editing commands.

303

20 – Text Processing

Table 20-8: sed Basic Editing Commands

Command Description

= Output the current line number.

a Append text after the current line.

d Delete the current line.

i Insert text in front of the current line.

p Print the current line. By default, sed prints every
line and only edits lines that match a specified
address within the file. The default behavior can
be overridden by specifying the -n option.

q Exit sed without processing any more lines. If the
-n option is not specified, output the current line.

Q Exit sed without processing any more lines.

s/regexp/replacement/ Substitute the contents of replacement wherever
regexp is found. replacement may include the
special character &, which is equivalent to the text
matched by regexp. In addition, replacement may
include the sequences \1 through \9, which are
the contents of the corresponding subexpressions
in regexp. For more about this, see the discussion
of back references below. After the trailing slash
following replacement, an optional flag may be
specified to modify the s command’s behavior.

y/set1/set2 Perform transliteration by converting characters
from set1 to the corresponding characters in set2.
Note that unlike tr, sed requires that both sets be
of the same length.

The s command is by far the most commonly used editing command. We will demon-
strate just some of its power by performing an edit on our distros.txt file. We dis-
cussed earlier how the date field in distros.txt was not in a “computer-friendly” for-
mat. While the date is formatted MM/DD/YYYY, it would be better (for ease of sorting)
if the format were YYYY-MM-DD. Performing this change on the file by hand would be
both time consuming and error prone, but with sed, this change can be performed in one
step.

304

Editing on the Fly

[me@linuxbox ~]$ sed 's/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\
)$/\3-\1-\2/' distros.txt
SUSE 10.2 2006-12-07
Fedora 10 2008-11-25
SUSE 11.0 2008-06-19
Ubuntu 8.04 2008-04-24
Fedora 8 2007-11-08
SUSE 10.3 2007-10-04
Ubuntu 6.10 2006-10-26
Fedora 7 2007-05-31
Ubuntu 7.10 2007-10-18
Ubuntu 7.04 2007-04-19
SUSE 10.1 2006-05-11
Fedora 6 2006-10-24
Fedora 9 2008-05-13
Ubuntu 6.06 2006-06-01
Ubuntu 8.10 2008-10-30
Fedora 5 2006-03-20

Wow! Now that is an ugly looking command. But it works. In just one step, we have
changed the date format in our file. It is also a perfect example of why regular expres-
sions are sometimes jokingly referred to as a “write-only” medium. We can write them,
but we sometimes cannot read them. Before we are tempted to run away in terror from
this command, let’s look at how it was constructed. First, we know that the command will
have this basic structure.

sed 's/regexp/replacement/' distros.txt

Our next step is to figure out a regular expression that will isolate the date. Because it is
in MM/DD/YYYY format and appears at the end of the line, we can use an expression
like this:

[0-9]{2}/[0-9]{2}/[0-9]{4}$

This matches two digits, a slash, two digits, a slash, four digits, and the end of line. So
that takes care of regexp, but what about replacement? To handle that, we must introduce
a new regular expression feature that appears in some applications that use BRE. This
feature is called back references and works like this: if the sequence \n appears in re-
placement where n is a number from 1 to 9, the sequence will refer to the corresponding
subexpression in the preceding regular expression. To create the subexpressions, we sim-

305

20 – Text Processing

ply enclose them in parentheses like so:

([0-9]{2})/([0-9]{2})/([0-9]{4})$

We now have three subexpressions. The first contains the month, the second contains the
day of the month, and the third contains the year. Now we can construct replacement as
follows:

\3-\1-\2

This gives us the year, a dash, the month, a dash, and the day.

Now, our command looks like this:

sed 's/([0-9]{2})/([0-9]{2})/([0-9]{4})$/\3-\1-\2/' distros.txt

We have two remaining problems. The first is that the extra slashes in our regular expres-
sion will confuse sed when it tries to interpret the s command. The second is that since
sed, by default, accepts only basic regular expressions, several of the characters in our
regular expression will be taken as literals, rather than as metacharacters. We can solve
both these problems with a liberal application of backslashes to escape the offending
characters.

sed 's/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/' dis
tros.txt

And there you have it!

Another feature of the s command is the use of optional flags that may follow the re-
placement string. The most important of these is the g flag, which instructs sed to apply
the search-and-replace globally to a line, not just to the first instance, which is the default.
Here is an example:

[me@linuxbox ~]$ echo "aaabbbccc" | sed 's/b/B/'
aaaBbbccc

We see that the replacement was performed, but only to the first instance of the letter b,
while the remaining instances were left unchanged. By adding the g flag, we are able to

306

Editing on the Fly

change all the instances.

[me@linuxbox ~]$ echo "aaabbbccc" | sed 's/b/B/g'
aaaBBBccc

So far, we have only given sed single commands via the command line. It is also possi-
ble to construct more complex commands in a script file using the -f option. To demon-
strate, we will use sed with our distros.txt file to build a report. Our report will
feature a title at the top, our modified dates, and all the distribution names converted to
uppercase. To do this, we will need to write a script, so we’ll fire up our text editor and
enter the following:

sed script to produce Linux distributions report

1 i\
\
Linux Distributions Report\

s/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/
y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/

We will save our sed script as distros.sed and run it like this:

[me@linuxbox ~]$ sed -f distros.sed distros.txt

Linux Distributions Report

SUSE 10.2 2006-12-07
FEDORA 10 2008-11-25
SUSE 11.0 2008-06-19
UBUNTU 8.04 2008-04-24
FEDORA 8 2007-11-08
SUSE 10.3 2007-10-04
UBUNTU 6.10 2006-10-26
FEDORA 7 2007-05-31
UBUNTU 7.10 2007-10-18
UBUNTU 7.04 2007-04-19
SUSE 10.1 2006-05-11
FEDORA 6 2006-10-24
FEDORA 9 2008-05-13

307

20 – Text Processing

UBUNTU 6.06 2006-06-01
UBUNTU 8.10 2008-10-30
FEDORA 5 2006-03-20

As we can see, our script produces the desired results, but how does it do it? Let’s take
another look at our script. We’ll use cat to number the lines.

[me@linuxbox ~]$ cat -n distros.sed
 1 # sed script to produce Linux distributions report
 2
 3 1 i\
 4 \
 5 Linux Distributions Report\
 6
 7 s/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/
 8 y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/

Line one of our script is a comment. Like many configuration files and programming lan-
guages on Linux systems, comments begin with the # character and are followed by hu-
man-readable text. Comments can be placed anywhere in the script (though not within
commands themselves) and are helpful to any humans who might need to identify and/or
maintain the script.

Line 2 is a blank line. Like comments, blank lines may be added to improve readability.

Many sed commands support line addresses. These are used to specify which lines of
the input are to be acted upon. Line addresses may be expressed as single line numbers,
line number ranges, and the special line number $, which indicates the last line of input.

Lines 3, 4, 5, and 6 contain text to be inserted at the address 1, the first line of the input.
The i command is followed by the sequence of a backslash and then a carriage return to
produce an escaped carriage return, or what is called a line-continuation character. This
sequence, which can be used in many circumstances including shell scripts, allows a car-
riage return to be embedded in a stream of text without signaling the interpreter (in this
case sed) that the end of the line has been reached. The i, and the a (which appends
text, rather than inserting it) and c (which replaces text) commands allow multiple lines
of text as long as each line, except the last, ends with a line-continuation character. The
sixth line of our script is actually the end of our inserted text and ends with a plain car-
riage return rather than a line-continuation character, signaling the end of the i com-
mand.

308

Editing on the Fly

Note: A line-continuation character is formed by a backslash followed immedi-
ately by a carriage return. No intermediary spaces are permitted.

Line 7 is our search-and-replace command. Since it is not preceded by an address, each
line in the input stream is subject to its action.

Line 8 performs transliteration of the lowercase letters into uppercase letters. Note that
unlike tr, the y command in sed does not support character ranges (for example, [a-
z]), nor does it support POSIX character classes. Again, since the y command is not pre-
ceded by an address, it applies to every line in the input stream.

People Who Like sed Also Like...

sed is a capable program, able to perform fairly complex editing tasks to streams
of text. It is most often used for simple, one-line tasks rather than long scripts.
Many users prefer other tools for larger tasks. The most popular of these are awk
and perl. These go beyond mere tools like the programs covered here and ex-
tend into the realm of complete programming languages. perl, in particular, is
often used instead of shell scripts for many system management and administra-
tion tasks, as well as being a popular medium for web development. awk is a little
more specialized. Its specific strength is its ability to manipulate tabular data. It
resembles sed in that awk programs normally process text files line by line, us-
ing a scheme similar to the sed concept of an address followed by an action.
While both awk and perl are outside the scope of this book, they are good skills
for the Linux command line user to learn.

aspell

The last tool we will look at is aspell, an interactive spelling checker. The aspell
program is the successor to an earlier program named ispell and can be used, for the
most part, as a drop-in replacement. While the aspell program is mostly used by other
programs that require spell-checking capability, it can also be used effectively as a stand-
alone tool from the command line. It has the ability to intelligently check various types of
text files, including HTML documents, C/C++ programs, email messages, and other
kinds of specialized texts.

To spellcheck a text file containing simple prose, it could be used like this:

309

20 – Text Processing

aspell check textfile

where textfile is the name of the file to check. As a practical example, let’s create a simple
text file named foo.txt containing some deliberate spelling errors.

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox jimped over the laxy dog.

Next we’ll check the file using aspell:

[me@linuxbox ~]$ aspell check foo.txt

As aspell is interactive in the check mode, we will see a screen like this:

The quick brown fox jimped over the laxy dog.

1) jumped 6) wimped
2) gimped 7) camped
3) comped 8) humped
4) limped 9) impede
5) pimped 0) umped
i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add l) Add Lower
b) Abort x) Exit

?

At the top of the display, we see our text with a suspiciously spelled word highlighted. In
the middle, we see ten spelling suggestions numbered zero through nine, followed by a
list of other possible actions. Finally, at the bottom, we see a prompt ready to accept our
choice.

If we press the 1 key, aspell replaces the offending word with the word “jumped” and
moves on to the next misspelled word, which is laxy. If we select the replacement lazy,
aspell replaces it and terminates. Once aspell has finished, we can examine our file
and see that the misspellings have been corrected:

310

Editing on the Fly

[me@linuxbox ~]$ cat foo.txt
The quick brown fox jumped over the lazy dog.

Unless told otherwise via the command line option --dont-backup, aspell creates
a backup file containing the original text by appending the extension .bak to the file-
name.

Showing off our sed editing prowess, we’ll put our spelling mistakes back in so we can
reuse our file.

[me@linuxbox ~]$ sed -i 's/lazy/laxy/; s/jumped/jimped/' foo.txt

The sed option -i tells sed to edit the file “in-place,” meaning that rather than sending
the edited output to standard output, it will rewrite the file with the changes applied. We
also see the ability to place more than one editing command on the line by separating
them with a semicolon.

Next, we’ll look at how aspell can handle different kinds of text files. Using a text edi-
tor such as vim (the adventurous may want to try sed), we will add some HTML
markup to our file.

<html>
<head>

<title>Mispelled HTML file</title>
</head>
<body>

<p>The quick brown fox jimped over the laxy dog.</p>
</body>

</html>

Now, if we try to spellcheck our modified file, we run into a problem. If we do it this
way:

[me@linuxbox ~]$ aspell check foo.txt

we’ll get this:

<html>

311

20 – Text Processing

 <head>
 <title>Mispelled HTML file</title>
 </head>
 <body>
 <p>The quick brown fox jimped over the laxy dog.</p>
 </body>
</html>

1) HTML 4) Hamel
2) ht ml 5) Hamil
3) ht-ml 6) hotel
i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add l) Add Lower
b) Abort x) Exit

?

aspell will see the contents of the HTML tags as misspelled. This problem can be
overcome by including the -H (HTML) checking-mode option, like this:

[me@linuxbox ~]$ aspell -H check foo.txt

which will result in this:

<html>
 <head>
 <title>Mispelled HTML file</title>
 </head>
 <body>
 <p>The quick brown fox jimped over the laxy dog.</p>
 </body>
</html>

1) Mi spelled 6) Misapplied
2) Mi-spelled 7) Miscalled
3) Misspelled 8) Respelled
4) Dispelled 9) Misspell
5) Spelled 0) Misled

312

Editing on the Fly

i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add l) Add Lower
b) Abort x) Exit

?

The HTML is ignored, and only the non-markup portions of the file are checked. In this
mode, the contents of HTML tags are ignored and not checked for spelling. However, the
contents of ALT tags, which benefit from checking, are checked in this mode.

Note: By default, aspell will ignore URLs and email addresses in text. This
behavior can be overridden with command line options. It is also possible to
specify which markup tags are checked and skipped. See the aspell man page
for details.

Summing Up

In this chapter, we looked at a few of the many command line tools that operate on text.
In the next chapter, we will look at several more. Admittedly, it may not seem immedi-
ately obvious how or why you might use some of these tools on a day-to-day basis,
though we have tried to show some practical examples of their use. We will find in later
chapters that these tools form the basis of a tool set that is used to solve a host of practical
problems. This will be particularly true when we get into shell scripting, where these
tools will really show their worth.

Further Reading

The GNU Project website contains many online guides to the tools discussed in this chap-
ter.

● From the Coreutils package:
http://www.gnu.org/software/coreutils/manual/coreutils.html#Output-of-entire-
files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-
sorted-files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-fields
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-char-
acters

● From the Diffutils package:

313

http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-characters
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-characters
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-fields
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-sorted-files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-sorted-files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Output-of-entire-files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Output-of-entire-files

20 – Text Processing

http://www.gnu.org/software/diffutils/manual/html_mono/diff.html

● sed:
http://www.gnu.org/software/sed/manual/sed.html

● aspell:
http://aspell.net/man-html/index.html

● There are many other online resources for sed, in particular:
http://www.grymoire.com/Unix/Sed.html
http://sed.sourceforge.net/sed1line.txt

● Also try googling “sed one liners”, “sed cheat sheets”

Extra Credit

There are a few more interesting text-manipulation commands worth investigating.
Among these are split (split files into pieces), csplit (split files into pieces based on
context), and sdiff (side-by-side merge of file differences).

314

http://sed.sourceforge.net/sed1line.txt
http://www.grymoire.com/Unix/Sed.html
http://aspell.net/man-html/index.html
http://www.gnu.org/software/sed/manual/sed.html
http://www.gnu.org/software/diffutils/manual/html_mono/diff.html

