
17 – Searching for Files

17 – Searching for Files

As we have wandered around our Linux system, one thing has become abundantly clear:
a typical Linux system has a lot of files! This begs the question, “How do we find
things?” We already know that the Linux file system is well organized according to con-
ventions passed down from one generation of Unix-like systems to the next, but the sheer
number of files can present a daunting problem.

In this chapter, we will look at two tools that are used to find files on a system.

● locate – Find files by name

● find – Search for files in a directory hierarchy

We will also look at a command that is often used with file-search commands to process
the resulting list of files.

● xargs – Build and execute command lines from standard input

In addition, we will introduce a couple of commands to assist us in our explorations.

● touch – Change file times

● stat – Display file or file system status

locate – Find Files the Easy Way

The locate program performs a rapid database search of pathnames, and then outputs
every name that matches a given substring. Say, for example, we want to find all the pro-
grams with names that begin with zip. Since we are looking for programs, we can as-
sume that the name of the directory containing the programs would end with bin/.
Therefore, we could try to use locate this way to find our files:

[me@linuxbox ~]$ locate bin/zip

locate will search its database of pathnames and output any that contain the string
bin/zip.

217

17 – Searching for Files

/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

If the search requirement is not so simple, we can combine locate with other tools such
as grep to design more interesting searches.

[me@linuxbox ~]$ locate zip | grep bin
/bin/bunzip2
/bin/bzip2
/bin/bzip2recover
/bin/gunzip
/bin/gzip
/usr/bin/funzip
/usr/bin/gpg-zip
/usr/bin/preunzip
/usr/bin/prezip
/usr/bin/prezip-bin
/usr/bin/unzip
/usr/bin/unzipsfx
/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

The locate program has been around for a number of years, and there are several vari-
ants in common use. The two most common ones found in modern Linux distributions
are slocate and mlocate, though they are usually accessed by a symbolic link
named locate. The different versions of locate have overlapping options sets. Some
versions include regular expression matching (which we’ll cover in Chapter 19, “Regular
Expressions”) and wildcard support. Check the man page for locate to determine
which version of locate is installed.

218

locate – Find Files the Easy Way

Where Does the locate Database Come From?

You may notice that, on some distributions, locate fails to work just after the
system is installed, but if you try again the next day, it works fine. What gives?
The locate database is created by another program named updatedb. Usu-
ally, it is run periodically as a cron job, that is, a task performed at regular inter-
vals by the cron daemon. Most systems equipped with locate run updatedb
once a day. Since the database is not updated continuously, you will notice that
very recent files do not show up when using locate. To overcome this, it’s pos-
sible to run the updatedb program manually by becoming the superuser and
running updatedb at the prompt.

find – Find Files the Hard Way

While the locate program can find a file based solely on its name, the find program
searches a given directory (and its subdirectories) for files based on a variety of at-
tributes. We’re going to spend a lot of time with find because it has a lot of interesting
features that we will see again and again when we start to cover programming concepts in
later chapters.

In its simplest use, find is given one or more names of directories to search. For exam-
ple, to produce a listing of our home directory we can use this:

[me@linuxbox ~]$ find ~

On most active user accounts, this will produce a large list. Since the list is sent to stan-
dard output, we can pipe the list into other programs. Let’s use wc to count the number of
files.

[me@linuxbox ~]$ find ~ | wc -l
47068

Wow, we’ve been busy! The beauty of find is that it can be used to identify files that
meet specific criteria. It does this through the (slightly strange) application of options,
tests, and actions. We’ll look at the tests first.

219

17 – Searching for Files

Tests

Let’s say we want a list of directories from our search. To do this, we could add the fol -
lowing test:

[me@linuxbox ~]$ find ~ -type d | wc -l
1695

Adding the test -type d limited the search to directories. Conversely, we could have
limited the search to regular files with this test:

[me@linuxbox ~]$ find ~ -type f | wc -l
38737

Table 17-1 lists the common file type tests supported by find.

Table 17-1: find File Types

File Type Description

b Block special device file

c Character special device file

d Directory

f Regular file

l Symbolic link

We can also search by file size and filename by adding some additional tests. Let’s look
for all the regular files that match the wildcard pattern *.JPG and are larger than one
megabyte.

[me@linuxbox ~]$ find ~ -type f -name "*.JPG" -size +1M | wc -l
840

In this example, we add the -name test followed by the wildcard pattern. Notice how we
enclose it in quotes to prevent pathname expansion by the shell. Next, we add the -size
test followed by the string “+1M”. The leading plus sign indicates that we are looking for
files larger than the specified number. A leading minus sign would change the meaning of
the string to be smaller than the specified number. Using no sign means, “match the value

220

find – Find Files the Hard Way

exactly.” The trailing letter M indicates that the unit of measurement is megabytes. Table
17-2 lists the characters that can be used to specify units.

Table 17-2: find Size Units

Character Unit

b 512-byte blocks. This is the default if no unit is specified.

c Bytes.

w 2-byte words.

k Kilobytes (units of 1024 bytes).

M Megabytes (units of 1048576 bytes).

G Gigabytes (units of 1073741824 bytes).

find supports a large number of tests. Table 17-3 provides a rundown of the common
ones. Note that in cases where a numeric argument is required, the same + and - notation
discussed above can be applied.

Table 17-3: find Tests

Test Description

-cmin n Match files or directories whose content or attributes were
last modified exactly n minutes ago. To specify less than n
minutes ago, use -n, and to specify more than n minutes
ago, use +n.

-cnewer file Match files or directories whose contents or attributes were
last modified more recently than those of file.

-ctime n Match files or directories whose contents or attributes were
last modified n*24 hours ago.

-empty Match empty files and directories.

-group name Match file or directories belonging to group. group may
be expressed either as a group name or as a numeric group
ID.

-iname pattern Like the -name test but case-insensitive.

-inum n Match files with inode number n. This is helpful for finding
all the hard links to a particular inode.

221

17 – Searching for Files

-mmin n Match files or directories whose contents were last
modified n minutes ago.

-mtime n Match files or directories whose contents were last
modified n*24 hours ago.

-name pattern Match files and directories with the specified wildcard
pattern.

-newer file Match files and directories whose contents were modified
more recently than the specified file. This is useful when
writing shell scripts that perform file backups. Each time
you make a backup, update a file (such as a log) and then
use find to determine which files have changed since the
last update.

-nouser Match file and directories that do not belong to a valid user.
This can be used to find files belonging to deleted accounts
or to detect activity by attackers.

-nogroup Match files and directories that do not belong to a valid
group.

-perm mode Match files or directories that have permissions set to the
specified mode. mode can be expressed by either octal or
symbolic notation.

-samefile name Similar to the -inum test. Match files that share the same
inode number as file name.

-size n Match files of size n.

-type c Match files of type c.

-user name Match files or directories belonging to user name. The user
may be expressed by a username or by a numeric user ID.

This is not a complete list. The find man page has all the details.

Operators

Even with all the tests that find provides, we may still need a better way to describe the
logical relationships between the tests. For example, what if we needed to determine
whether all the files and subdirectories in a directory had secure permissions? We would
look for all the files with permissions that are not 0600 and the directories with permis-
sions that are not 0700. Fortunately, find provides a way to combine tests using logical

222

find – Find Files the Hard Way

operators to create more complex logical relationships. To express the aforementioned
test, we could do this:

[me@linuxbox ~]$ find ~ \(-type f -not -perm 0600 \) -or \(-type d
-not -perm 0700 \)

Yikes! That sure looks weird. What is all this stuff? Actually, the operators are not that
complicated once you get to know them. Table 17-4 describes the logical operators used
with find.

Table 17-4: find Logical Operators

Operator Description

-and Match if the tests on both sides of the operator are true.
This can be shortened to -a. Note that when no operator is
present, -and is implied by default.

-or Match if a test on either side of the operator is true. This
can be shortened to -o.

-not Match if the test following the operator is false. This can be
abbreviated with an exclamation point (!).

() Groups tests and operators together to form larger
expressions. This is used to control the precedence of the
logical evaluations. By default, find evaluates from left to
right. It is often necessary to override the default evaluation
order to obtain the desired result. Even if not needed, it is
helpful sometimes to include the grouping characters to
improve the readability of the command. Note that since
the parentheses have special meaning to the shell, they
must be quoted when using them on the command line to
allow them to be passed as arguments to find. Usually the
backslash character is used to escape them.

With this list of operators in hand, let’s deconstruct our find command. When viewed
from the uppermost level, we see that our tests are arranged as two groupings separated
by an -or operator.

(expression 1) -or (expression 2)

This makes sense, since we are searching for files with a certain set of permissions and

223

17 – Searching for Files

for directories with a different set. If we are looking for both files and directories, why do
we use -or instead of -and? As find scans through the files and directories, each one
is evaluated to see whether it matches the specified tests. We want to know whether it is
either a file with bad permissions or a directory with bad permissions. It can’t be both at
the same time. So if we expand the grouped expressions, we can see it this way:

(file with bad perms) -or (directory with bad perms)

Our next challenge is how to test for “bad permissions.” How do we do that? Actually, we
don’t. What we will test for is “not good permissions” since we know what “good per-
missions” are. In the case of files, we define good as 0600 and for directories, we define
it as 0700. The expression that will test files for “not good” permissions is as follows:

-type f -and -not -perms 0600

For directories it is as follows:

-type d -and -not -perms 0700

As noted in the Table 17-4 above, the -and operator can be safely removed since it is
implied by default. So if we put this all back together, we get our final command.

find ~ (-type f -not -perms 0600) -or (-type d -not -
perms 0700)

However, since the parentheses have special meaning to the shell, we must escape them
to prevent the shell from trying to interpret them. Preceding each one with a backslash
character does the trick.

There is another feature of logical operators that is important to understand. Let’s say that
we have two expressions separated by a logical operator.

expr1 -operator expr2

In all cases, expr1 will always be performed; however, the operator will determine
whether expr2 is performed. Table 17-5 outlines how it works.

Table 17-5: find AND/OR Logic

Results of expr1 Operator expr2 is...

True -and Always performed

False -and Never performed

True -or Never performed

False -or Always performed

Why does this happen? It’s done to improve performance. Take -and, for example. We

224

find – Find Files the Hard Way

know that the expression expr1 -and expr2 cannot be true if the result of expr1 is
false, so there is no point in performing expr2. Likewise, if we have the expression
expr1 -or expr2 and the result of expr1 is true, there is no point in performing
expr2, as we already know that the expression expr1 -or expr2 is true.

OK, so it helps it go faster. Why is this important? It’s important because we can rely on
this behavior to control how actions are performed, as we will soon see.

Predefined Actions

Let’s get some work done! Having a list of results from our find command is useful, but
what we really want to do is act on the items on the list. Fortunately, find allows actions
to be performed based on the search results. There are a set of predefined actions and sev-
eral ways to apply user-defined actions. First, let’s look at a few of the predefined actions
listed in Table 17-6.

Table 17-6: Predefined find Actions

Action Description

-delete Delete the currently matching file.

-ls Perform the equivalent of ls -dils on the matching file.
Output is sent to standard output.

-print Output the full pathname of the matching file to standard
output. This is the default action if no other action is
specified.

-quit Quit once a match has been made.

As with the tests, there are many more actions. See the find man page for full details.

In the first example, we did this:

find ~

This produced a list of every file and subdirectory contained within our home directory. It
produced a list because the -print action is implied if no other action is specified.
Thus, our command could also be expressed as follows:

find ~ -print

225

17 – Searching for Files

We can use find to delete files that meet certain criteria. For example, to delete files that
have the file extension .bak (which is often used to designate backup files), we could
use this command:

find ~ -type f -name '*.bak' -delete

In this example, every file in the user’s home directory (and its subdirectories) is searched
for filenames ending in .bak. When they are found, they are deleted.

Warning: It should go without saying that you should use extreme caution
when using the -delete action. Always test the command first by substituting
the -print action for -delete to confirm the search results.

Before we go on, let’s take another look at how the logical operators affect actions. Con-
sider the following command:

find ~ -type f -name '*.bak' -print

As we have seen, this command will look for every regular file (-type f) whose name
ends with .bak (-name '*.bak') and will output the relative pathname of each
matching file to standard output (-print). However, the reason the command performs
the way it does is determined by the logical relationships between each of the tests and
actions. Remember, there is, by default, an implied -and relationship between each test
and action. We could also express the command this way to make the logical relation-
ships easier to see:

find ~ -type f -and -name '*.bak' -and -print

With our command fully expressed, let’s look at how the logical operators affect its exe-
cution:

Test/Action Is Performed Only If...

-print -type f and -name '*.bak' are true

-name ‘*.bak’ -type f is true

-type f Is always performed, since it is the first test/action in an -
and relationship.

226

find – Find Files the Hard Way

Since the logical relationship between the tests and actions determines which of them are
performed, we can see that the order of the tests and actions is important. For instance, if
we were to reorder the tests and actions so that the -print action was the first one, the
command would behave much differently.

find ~ -print -and -type f -and -name '*.bak'

This version of the command will print each file (the -print action always evaluates to
true) and then test for file type and the specified file extension.

User-Defined Actions

In addition to the predefined actions, we can also invoke arbitrary commands. The tradi-
tional way of doing this is with the -exec action. This action works like this:

-exec command {} ;

Here command is the name of a command, {} is a symbolic representation of the current
pathname, and the semicolon is a required delimiter indicating the end of the command.
Here’s an example of using -exec to act like the -delete action discussed earlier:

-exec rm '{}' ';'

Again, since the brace and semicolon characters have special meaning to the shell, they
must be quoted or escaped.

It’s also possible to execute a user-defined action interactively. By using the -ok action
in place of -exec, the user is prompted before execution of each specified command.

find ~ -type f -name 'foo*' -ok ls -l '{}' ';'
< ls ... /home/me/bin/foo > ? y
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
< ls ... /home/me/foo.txt > ? y
-rw-r--r-- 1 me me 0 2016-09-19 12:53 /home/me/foo.txt

In this example, we search for files with names starting with the string foo and execute
the command ls -l each time one is found. Using the -ok action prompts the user be-
fore the ls command is executed.

227

17 – Searching for Files

Improving Efficiency

When the -exec action is used, it launches a new instance of the specified command
each time a matching file is found. There are times when we might prefer to combine all
of the search results and launch a single instance of the command. For example, rather
than executing the commands like this:

ls -l file1

ls -l file2

we may prefer to execute them this way:

ls -l file1 file2

This causes the command to be executed only one time rather than multiple times. There
are two ways we can do this: the traditional way, using the external command xargs and
the alternate way, using a new feature in find itself. We’ll talk about the alternate way
first.

By changing the trailing semicolon character to a plus sign, we activate the ability of
find to combine the results of the search into an argument list for a single execution of
the desired command. Going back to our example, this will execute ls each time a
matching file is found:

find ~ -type f -name 'foo*' -exec ls -l '{}' ';'
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2016-09-19 12:53 /home/me/foo.txt

By changing the command to the following:

find ~ -type f -name 'foo*' -exec ls -l '{}' +
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2016-09-19 12:53 /home/me/foo.txt

we get the same results, but the system has to execute the ls command only once.

xargs

The xargs command performs an interesting function. It accepts input from standard in-
put and converts it into an argument list for a specified command. With our example, we
would use it like this:

228

find – Find Files the Hard Way

find ~ -type f -name 'foo*' -print | xargs ls -l
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2016-09-19 12:53 /home/me/foo.txt

Here we see the output of the find command piped into xargs, which, in turn, con-
structs an argument list for the ls command and then executes it.

Note: While the number of arguments that can be placed into a command line is
quite large, it’s not unlimited. It is possible to create commands that are too long
for the shell to accept. When a command line exceeds the maximum length sup-
ported by the system, xargs executes the specified command with the maxi-
mum number of arguments possible and then repeats this process until standard
input is exhausted. To see the maximum size of the command line, execute
xargs with the --show-limits option.

Dealing with Funny Filenames

Unix-like systems allow embedded spaces (and even newlines!) in filenames.
This causes problems for programs like xargs that construct argument lists for
other programs. An embedded space will be treated as a delimiter, and the result-
ing command will interpret each space-separated word as a separate argument. To
overcome this, find and xargs allow the optional use of a null character as an
argument separator. A null character is defined in ASCII as the character repre-
sented by the number zero (as opposed to, for example, the space character, which
is defined in ASCII as the character represented by the number 32). The find
command provides the action -print0, which produces null-separated output,
and the xargs command has the --null (or -0) option, which accepts null
separated input. Here’s an example:

find ~ -iname '*.jpg' -print0 | xargs --null ls -l

Using this technique, we can ensure that all files, even those containing embedded
spaces in their names, are handled correctly.

A Return to the Playground

It’s time to put find to some (almost) practical use. We’ll create a playground and try
some of what we have learned.

229

17 – Searching for Files

First, let’s create a playground with lots of subdirectories and files.

[me@linuxbox ~]$ mkdir -p playground/dir-{001..100}
[me@linuxbox ~]$ touch playground/dir-{001..100}/file-{A..Z}

Marvel at the power of the command line! With these two lines, we created a playground
directory containing 100 subdirectories each containing 26 empty files. Try that with the
GUI!

The method we employed to accomplish this magic involved a familiar command
(mkdir), an exotic shell expansion (braces), and a new command, touch. By combin-
ing mkdir with the -p option (which causes mkdir to create the parent directories of
the specified paths) with brace expansion, we were able to create 100 subdirectories.

The touch command is usually used to set or update the access, change, and modify
times of files. However, if a filename argument is that of a nonexistent file, an empty file
is created.

In our playground, we created 100 instances of a file named file-A. Let’s find them.

[me@linuxbox ~]$ find playground -type f -name 'file-A'

Note that unlike ls, find does not produce results in sorted order. Its order is deter-
mined by the layout of the storage device. We can confirm that we actually have 100 in-
stances of the file this way.

[me@linuxbox ~]$ find playground -type f -name 'file-A' | wc -l
100

Next, let’s look at finding files based on their modification times. This will be helpful
when creating backups or organizing files in chronological order. To do this, we will first
create a reference file against which we will compare modification time.

[me@linuxbox ~]$ touch playground/timestamp

This creates an empty file named timestamp and sets its modification time to the cur-
rent time. We can verify this by using another handy command, stat, which is a kind of
souped-up version of ls. The stat command reveals all that the system understands
about a file and its attributes.

230

find – Find Files the Hard Way

[me@linuxbox ~]$ stat playground/timestamp
 File: `playground/timestamp'
 Size: 0 Blocks: 0 IO Block: 4096 regular empty file
Device: 803h/2051d Inode: 14265061 Links: 1
Access: (0644/-rw-r--r--) Uid: (1001/ me) Gid: (1001/ me)
Access: 2018-10-08 15:15:39.000000000 -0400
Modify: 2018-10-08 15:15:39.000000000 -0400
Change: 2018-10-08 15:15:39.000000000 -0400

If we use touch again and then examine the file with stat, we will see that the file’s
times have been updated.

[me@linuxbox ~]$ touch playground/timestamp
[me@linuxbox ~]$ stat playground/timestamp
 File: `playground/timestamp'
 Size: 0 Blocks: 0 IO Block: 4096 regular empty file
Device: 803h/2051d Inode: 14265061 Links: 1
Access: (0644/-rw-r--r--) Uid: (1001/ me) Gid: (1001/ me)
Access: 2018-10-08 15:23:33.000000000 -0400
Modify: 2018-10-08 15:23:33.000000000 -0400
Change: 2018-10-08 15:23:33.000000000 -0400

Next, let’s use find to update some of our playground files.

[me@linuxbox ~]$ find playground -type f -name 'file-B' -exec touch
'{}' ';'

This updates all files in the playground named file-B. Next we’ll use find to identify
the updated files by comparing all the files to the reference file timestamp.

[me@linuxbox ~]$ find playground -type f -newer playground/timestamp

The results contain all 100 instances of file-B. Since we performed a touch on all the
files in the playground named file-B after we updated timestamp, they are now
“newer” than timestamp and thus can be identified with the -newer test.

Finally, let’s go back to the bad permissions test we performed earlier and apply it to
playground.

231

17 – Searching for Files

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 \) -or \(
-type d -not -perm 0700 \)

This command lists all 100 directories and 2,600 files in playground (as well as
timestamp and playground itself, for a total of 2,702) because none of them meets
our definition of “good permissions.” With our knowledge of operators and actions, we
can add actions to this command to apply new permissions to the files and directories in
our playground.

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 -exec
chmod 0600 '{}' ';' \) -or \(-type d -not -perm 0700 -exec chmod
0700 '{}' ';' \)

On a day-to-day basis, we might find it easier to issue two commands, one for the direc-
tories and one for the files, rather than this one large compound command, but it’s nice to
know that we can do it this way. The important point here is to understand how the opera-
tors and actions can be used together to perform useful tasks.

Options

Finally, we have the options. The options are used to control the scope of a find search.
They may be included with other tests and actions when constructing find expressions.
Table 17-7 lists the most commonly used find options.

Table 17-7: find Options

Option Description

-depth Direct find to process a directory’s files before the
directory itself. This option is automatically applied when
the -delete action is specified.

-maxdepth levels Set the maximum number of levels that find will
descend into a directory tree when performing tests and
actions.

-mindepth levels Set the minimum number of levels that find will
descend into a directory tree before applying tests and
actions.

-mount Direct find not to traverse directories that are mounted
on other file systems.

232

find – Find Files the Hard Way

-noleaf Direct find not to optimize its search based on the
assumption that it is searching a Unix-like file system.
This is needed when scanning DOS/Windows file
systems and CD-ROMs.

Summing Up

It's easy to see that locate is as simple as find is complicated. They both have their
uses. Take the time to explore the many features of find. It can, with regular use, im-
prove your understanding of Linux file system operations.

Further Reading

● The locate, updatedb, find, and xargs programs are all part the GNU
Project’s findutils package. The GNU Project provides a website with extensive
on-line documentation, which is quite good and should be read if you are using
these programs in high security environments:
http://www.gnu.org/software/findutils/

233

http://www.gnu.org/software/findutils/

