
14 – Package Management

14 – Package Management

If we spend any time in the Linux community, we hear many opinions as to which of the
many Linux distributions is “best.” Often, these discussions get really silly, focusing on
such things as the prettiness of the desktop background (some people won't use Ubuntu
because of its default color scheme!) and other trivial matters.

The most important determinant of distribution quality is the packaging system and the
vitality of the distribution's support community. As we spend more time with Linux, we
see that its software landscape is extremely dynamic. Things are constantly changing.
Most of the top-tier Linux distributions release new versions every six months and many
individual program updates every day. To keep up with this blizzard of software, we need
good tools for package management.

Package management is a method of installing and maintaining software on the system.
Today, most people can satisfy all of their software needs by installing packages from
their Linux distributor. This contrasts with the early days of Linux, when one had to
download and compile source code to install software. There isn’t anything wrong with
compiling source code; in fact, having access to source code is the great wonder of
Linux. It gives us (and everybody else) the ability to examine and improve the system.
It's just that having a precompiled package is faster and easier to deal with.

In this chapter, we will look at some of the command line tools used for package manage-
ment. While all the major distributions provide powerful and sophisticated graphical pro-
grams for maintaining the system, it is important to learn about the command line pro-
grams, too. They can perform many tasks that are difficult (or impossible) to do with their
graphical counterparts.

Packaging Systems

Different distributions use different packaging systems, and as a general rule, a package
intended for one distribution is not compatible with another distribution. Most distribu-
tions fall into one of two camps of packaging technologies: the Debian .deb camp and the
Red Hat .rpm camp. There are some important exceptions such as Gentoo, Slackware,
and Arch, but most others use one of these two basic systems as shown in Table 14-1.

172

Packaging Systems

Table 14-1: Major Packaging System Families

Packaging System Distributions (Partial Listing)

Debian Style (.deb) Debian, Ubuntu, Linux Mint, Raspbian

Red Hat Style (.rpm) Fedora, CentOS, Red Hat Enterprise Linux, OpenSUSE

How a Package System Works

The method of software distribution found in the proprietary software industry usually
entails buying a piece of installation media such as an “install disk” or visiting a vendor's
web site and downloading a product and then running an “installation wizard” to install a
new application on the system.

Linux doesn't work that way. Virtually all software for a Linux system will be found on
the Internet. Most of it will be provided by the distribution vendor in the form of package
files, and the rest will be available in source code form that can be installed manually.
We'll talk about how to install software by compiling source code in chapter 23, “Compil-
ing Programs.”

Package Files

The basic unit of software in a packaging system is the package file. A package file is a
compressed collection of files that comprise the software package. A package may consist
of numerous programs and data files that support the programs. In addition to the files to
be installed, the package file also includes metadata about the package, such as a text de-
scription of the package and its contents. Additionally, many packages contain pre- and
post-installation scripts that perform configuration tasks before and after the package in-
stallation.

Package files are created by a person known as a package maintainer, often (but not al-
ways) an employee of the distribution vendor. The package maintainer gets the software
in source code form from the upstream provider (the author of the program), compiles it,
and creates the package metadata and any necessary installation scripts. Often, the pack-
age maintainer will apply modifications to the original source code to improve the pro-
gram's integration with the other parts of the Linux distribution.

Repositories

While some software projects choose to perform their own packaging and distribution,
most packages today are created by the distribution vendors and interested third parties.
Packages are made available to the users of a distribution in central repositories that may
contain many thousands of packages, each specially built and maintained for the distribu-
tion.

173

14 – Package Management

A distribution may maintain several different repositories for different stages of the soft-
ware development life cycle. For example, there will usually be a “testing” repository
that contains packages that have just been built and are intended for use by brave souls
who are looking for bugs before the packages are released for general distribution. A dis-
tribution will often have a “development” repository where work-in-progress packages
destined for inclusion in the distribution's next major release are kept.

A distribution may also have related third-party repositories. These are often needed to
supply software that, for legal reasons such as patents or DRM anti-circumvention issues,
cannot be included with the distribution. Perhaps the best known case is that of encrypted
DVD support, which is not legal in the United States. The third-party repositories operate
in countries where software patents and anti-circumvention laws do not apply. These
repositories are usually wholly independent of the distribution they support, and to use
them, one must know about them and manually include them in the configuration files for
the package management system.

Dependencies

Programs are seldom “standalone”; rather they rely on the presence of other software
components to get their work done. Common activities, such as input/output for example,
are handled by routines shared by many programs. These routines are stored in what are
called shared libraries, which provide essential services to more than one program. If a
package requires a shared resource such as a shared library, it is said to have a depen-
dency. Modern package management systems all provide some method of dependency
resolution to ensure that when a package is installed, all of its dependencies are installed,
too.

High and Low-level Package Tools

Package management systems usually consist of two types of tools.

• Low-level tools which handle tasks such as installing and removing package files

• High-level tools that perform metadata searching and dependency resolution

In this chapter, we will look at the tools supplied with Debian-style systems (such as
Ubuntu and many others) and those used by Red Hat products. While all Red Hat-style
distributions rely on the same low-level program (rpm), they use different high-level
tools. For our discussion, we will cover the high-level program yum, used by Red Hat
Enterprise Linux, and CentOS. Other Red Hat-style distributions provide high-level tools
with comparable features (see Table 14-2).

Table 14- 2: Packaging System Tools

Distributions Low-Level Tools High-Level Tools

174

How a Package System Works

Debian style dpkg apt, apt-get,
aptitude

Fedora, Red Hat
Enterprise Linux, CentOS

rpm yum, dnf

Common Package Management Tasks

Many operations can be performed with the command line package management tools.
We will look at the most common. Be aware that the low-level tools also support the cre-
ation of package files, an activity outside the scope of this book.

In the discussion below, the term package_name refers to the actual name of a package
rather than the term package_file, which is the name of the file that contains the
package.

Finding a Package in a Repository

Using the high-level tools to search repository metadata, a package can be located based
on its name or description (see Table 14-3).

Table 14-3: Package Search Commands

Style Command(s)

Debian apt-get update
apt-cache search search_string

Red Hat yum search search_string

For example, to search a yum repository for the emacs text editor, we can use this com-
mand:

yum search emacs

Installing a Package from a Repository

High-level tools permit a package to be downloaded from a repository and installed with
full dependency resolution (see Table 14-4).

Table 14-4: Package Installation Commands

Style Command(s)

175

14 – Package Management

Debian apt-get update
apt-get install package_name

Red Hat yum install package_name

For example, to install the emacs text editor from an apt repository on a Debian system,
we can use this command:

apt-get update; apt-get install emacs

Installing a Package from a Package File

If a package file has been downloaded from a source other than a repository, it can be in-
stalled directly (though without dependency resolution) using a low-level tool (see Table
14-5).

Table 14-5: Low-Level Package Installation Commands

Style Command(s)

Debian dpkg -i package_file

Red Hat rpm -i package_file

For example, if the emacs-22.1-7.fc7-i386.rpm package file had been down-
loaded from a non-repository site, it would be installed this way:

rpm -i emacs-22.1-7.fc7-i386.rpm

Note: Because this technique uses the low-level rpm program to perform the in-
stallation, no dependency resolution is performed. If rpm discovers a missing de-
pendency, rpm will exit with an error.

Removing a Package

Packages can be uninstalled using either the high-level or low-level tools. The high-level
tools are shown in Table 14-6.

176

Common Package Management Tasks

Table 14-6: Package Removal Commands

Style Command(s)

Debian apt-get remove package_name

Red Hat yum erase package_name

For example, to uninstall the emacs package from a Debian-style system, we can use this
command:

apt-get remove emacs

Updating Packages from a Repository

The most common package management task is keeping the system up-to-date with the
latest versions of packages. The high-level tools can perform this vital task in a single
step (see Table 14-7).

Table 14-7: Package Update Commands

Style Command(s)

Debian apt-get update; apt-get upgrade

Red Hat yum update

For example, to apply all available updates to the installed packages on a Debian-style
system, we can use this command:

apt-get update; apt-get upgrade

Upgrading a Package from a Package File

If an updated version of a package has been downloaded from a non-repository source, it
can be installed, replacing the previous version (see Table 14-8).

Table 14-8: Low-Level Package Upgrade Commands

Style Command(s)

177

14 – Package Management

Debian dpkg -i package_file

Red Hat rpm -U package_file

For example, to update an existing installation of emacs to the version contained in the
package file emacs-22.1-7.fc7-i386.rpm on a Red Hat system, we can use this
command:

rpm -U emacs-22.1-7.fc7-i386.rpm

Note: dpkg does not have a specific option for upgrading a package versus in-
stalling one as rpm does.

Listing Installed Packages

Table 14-9 lists the commands we can use to display a list of all the packages installed on
the system.

Table 14-9: Package Listing Commands

Style Command(s)

Debian dpkg -l

Red Hat rpm -qa

Determining Whether a Package is Installed

Table 14-10 list the low-level tools we can use to display whether a specified package is
installed.

Table 14-10: Package Status Commands

Style Command(s)

Debian dpkg -s package_name

Red Hat rpm -q package_name

For example, to determine whether the emacs package is installed on a Debian style sys-
tem, we can use this command:

178

Common Package Management Tasks

dpkg --status emacs

Displaying Information About an Installed Package

If the name of an installed package is known, we can use the commands in Table 14-11 to
display a description of the package.

Table 14-11: Package Information Commands

Style Command(s)

Debian apt-cache show package_name

Red Hat yum info package_name

For example, to see a description of the emacs package on a Debian-style system, we can
use this command:

apt-cache show emacs

Finding Which Package Installed a File

To determine what package is responsible for the installation of a particular file, we can
use the commands in Table 14-12.

Table 14-12: Package File Identification Commands

Style Command(s)

Debian dpkg -S file_name

Red Hat rpm -qf file_name

For example, to see what package installed the /usr/bin/vim file on a Red Hat sys-
tem, we can use the following:

rpm -qf /usr/bin/vim

179

14 – Package Management

Summing Up

In the chapters that follow, we will explore many different programs covering a wide
range of application areas. While most of these programs are commonly installed by de-
fault, we may need to install additional packages if the necessary programs are not al-
ready installed on our system. With our newfound knowledge (and appreciation) of pack-
age management, we should have no problem installing and managing the programs we
need.

The Linux Software Installation Myth

People migrating from other platforms sometimes fall victim to the myth that
software is somehow difficult to install under Linux and that the variety of pack-
aging schemes used by different distributions is a hindrance. Well, it is a hin-
drance, but only to proprietary software vendors that want to distribute binary-
only versions of their secret software.

The Linux software ecosystem is based on the idea of open source code. If a pro-
gram developer releases source code for a program, it is likely that a person asso-
ciated with a distribution will package the program and include it in their reposi-
tory. This method ensures that the program is well integrated into the distribution,
and the user is given the convenience of “one-stop shopping” for software, rather
than having to search for each program's website. Recently, major proprietary
platform vendors have begun building application stores that mimic this idea.

Device drivers are handled in much the same way, except that instead of being
separate items in a distribution's repository, they become part of the Linux kernel.
Generally speaking, there is no such thing as a “driver disk” in Linux. Either the
kernel supports a device or it doesn't, and the Linux kernel supports a lot of de-
vices. Many more, in fact, than Windows does. Of course, this is of no consola-
tion if the particular device you need is not supported. When that happens, you
need to look at the cause. A lack of driver support is usually caused by one of
three things:

1. The device is too new. Since many hardware vendors don't actively support
Linux development, it falls upon a member of the Linux community to write the
kernel driver code. This takes time.

2. The device is too exotic. Not all distributions include every possible device
driver. Each distribution builds its own kernels, and since kernels are very config-
urable (which is what makes it possible to run Linux on everything from wrist-
watches to mainframes) they may have overlooked a particular device. By locat-

180

Summing Up

ing and downloading the source code for the driver, it is possible for you (yes,
you) to compile and install the driver yourself. This process is not overly difficult,
but it is rather involved. We'll talk about compiling software in a later chapter.

3. The hardware vendor is hiding something. It has neither released source
code for a Linux driver, nor has it released the technical documentation for some-
body to create one for them. This means the hardware vendor is trying to keep the
programming interfaces to the device a secret. Since we don't want secret devices
in our computers, it is best that you avoid such products.

Further Reading

Spend some time getting to know the package management system for your distribution.
Each distribution provides documentation for its package management tools. In addition,
here are some more generic sources:

● The Debian GNU/Linux FAQ chapter on package management provides an over-
view of package management on Debian systems :
http://www.debian.org/doc/FAQ/ch-pkgtools.en.html

● The home page for the RPM project:
http://www.rpm.org

● The home page for the YUM project:
h ttp:// yum.baseurl.org

● For a little background, the Wikipedia has an article on metadata:
http://en.wikipedia.org/wiki/Metadata

181

http://en.wikipedia.org/wiki/Metadata
http://yum.baseurl.org/
http://yum.baseurl.org/
http://yum.baseurl.org/
http://www.rpm.org/
http://www.debian.org/doc/FAQ/ch-pkgtools.en.html

