
12 – A Gentle Introduction to vi

12 – A Gentle Introduction to vi

There is an old joke about a visitor to New York City asking a passerby for directions to
the city's famous classical music venue:

Visitor: Excuse me, how do I get to Carnegie Hall?

Passerby: Practice, practice, practice!

Learning the Linux command line, like becoming an accomplished pianist, is not some-
thing that we pick up in an afternoon. It takes years of practice. In this chapter, we will
introduce the  vi (pronounced “vee eye”) text editor, one of the core programs in the
Unix tradition. vi is somewhat notorious for its difficult user interface, but when we see
a master sit down at the keyboard and begin to “play,” we will indeed be witness to some
great art. We won't become masters in this chapter, but when we are done, we will know
how to play “chopsticks” in vi.

Why We Should Learn vi

In this modern age of graphical editors and easy-to-use text-based editors such as nano,
why should we learn vi? There are three good reasons.

● vi is almost always available. This can be a lifesaver if we have a system with no
graphical interface, such as a remote server or a local system with a broken X
configuration.  nano, while increasingly popular, is still not universal. POSIX, a
standard for program compatibility on Unix systems, requires that vi be present.

● vi is lightweight and fast. For many tasks, it's easier to bring up vi than it is to
find the graphical text editor in the menus and wait for its multiple megabytes to
load. In addition,  vi is designed for typing speed. As we will see, a skilled  vi
user never has to lift his or her fingers from the keyboard while editing.

● We don't want other Linux and Unix users to think we are cowards.

Okay, maybe two good reasons.

141



12 – A Gentle Introduction to vi

A Little Background 

The first version of  vi was written in 1976 by Bill  Joy, a University of California at
Berkley student who later went on to co-found Sun Microsystems. vi derives its name
from the word “visual,” because it was intended to allow editing on a video terminal with
a moving cursor. Previous to visual editors, there were line editors that operated on a sin-
gle line of text at a time. To specify a change, we tell a line editor to go to a particular line
and describe what change to make, such as adding or deleting text. With the advent of
video terminals (rather than printer-based terminals like teletypes), visual editing became
possible. vi actually incorporates a powerful line editor called ex, and we can use line
editing commands while using vi.

Most Linux distributions don't include real  vi; rather, they ship with an enhanced re-
placement called  vim (which is short for “vi improved”) written by Bram  Moolenaar.
vim is a substantial improvement over traditional Unix vi and is usually symbolically
linked (or aliased) to the name vi on Linux systems. In the discussions that follow, we
will assume that we have a program called vi that is really vim.

Starting and Stopping vi

To start vi, we simply enter the following:

[me@linuxbox ~]$ vi

A screen like this should appear:

~
~
~                         VIM - Vi Improved
~
~                          version 8.0.707
~                     by Bram Moolenaar et al.
~            Vim is open source and freely distributable
~
~                     Sponsor Vim development!
~          type  :help sponsor<Enter>    for information
~
~          type  :q<Enter>               to exit
~          type  :help<Enter>  or  <F1>  for on-line help
~          type  :help version8<Enter>   for version info
~

142



Starting and Stopping vi

~                   Running in Vi compatible mode
~          type  :set nocp<Enter>        for Vim defaults
~          type  :help cp-default<Enter> for info on this
~
~
~

Just as we did with nano earlier, the first thing to learn is how to exit. To exit, we enter
the following command (note that the colon character is part of the command):

:q

The shell prompt should return. If, for some reason, vi will not quit (usually because we
made a change to a file that has not yet been saved), we can tell vi that we really mean it
by adding an exclamation point to the command.

:q!

Tip: If you get “lost” in  vi, try pressing the  Esc key twice to find your way
again.

Compatibility Mode

In the example startup screen above, we see the text “Running in Vi compatible
mode.” This means that vim will run in a mode that is closer to the normal be-
havior of vi rather than the enhanced behavior of vim. For the purposes of this
chapter, we will want to run vim with its enhanced behavior. To do this, you have
a few options. Try running  vim instead of  vi. If that works, consider adding
alias vi='vim' to your .bashrc file. Alternatively, use this command to
add a line to your vim configuration file:

echo "set nocp" >> ~/.vimrc

Different Linux distributions package vim in different ways. Some distributions
install a minimal version of  vim by default that supports only a limited set of

143



12 – A Gentle Introduction to vi

vim features. While performing the lessons that follow, you may encounter miss-
ing features. If this is the case, install the full version of vim.

Editing Modes

Let's start vi again, this time passing to it the name of a nonexistent file. This is how we
can create a new file with vi:

[me@linuxbox ~]$ rm -f foo.txt
[me@linuxbox ~]$ vi foo.txt

If all goes well, we should get a screen like this:

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
"foo.txt" [New File] 

The leading tilde characters (~) indicate that no text exists on that line. This shows that
we have an empty file. Do not type anything yet!

144



Editing Modes

The second most important thing to learn about vi (after learning how to exit) is that vi
is a modal editor. When vi starts, it begins in command mode. In this mode, almost ev-
ery key is a command, so if we were to start typing,  vi would basically go crazy and
make a big mess.

Entering Insert Mode

To add some text to our file, we must first enter insert mode. To do this, we press the i
key. Afterward, we should see the following at the bottom of the screen if vim is running
in its usual enhanced mode (this will not appear in vi compatible mode):

-- INSERT --

Now we can enter some text. Try this:

The quick brown fox jumped over the lazy dog.

To exit insert mode and return to command mode, press the Esc key.

Saving Our Work

To save the change we just made to our file, we must enter an ex command while in com-
mand mode. This is easily done by pressing the : key. After doing this, a colon character
should appear at the bottom of the screen.

:

To write our modified file, we follow the colon with a w and then press Enter.

:w

The file will be written to the hard drive, and we should get a confirmation message at the
bottom of the screen, like this:

"foo.txt" [New] 1L, 46C written

145



12 – A Gentle Introduction to vi

Tip: If you read the vim documentation, you will notice that (confusingly) com-
mand mode is called normal mode and ex commands are called command mode.
Beware.

Moving the Cursor Around

While in command mode,  vi offers a large number of movement commands, some of
which it shares with less. Table 12-1 lists a subset.

Table 12-1: Cursor Movement Keys

Key Moves The Cursor

l or right arrow Right one character.

h or left arrow Left one character.

j or down arrow Down one line.

k or up arrow Up one line.

0 (zero) To the beginning of the current line.

^ To the first non-whitespace character on the current 
line.

$ To the end of the current line.

w To the beginning of the next word or punctuation 
character.

W To the beginning of the next word, ignoring 
punctuation characters.

b To the beginning of the previous word or punctuation 
character.

B To the beginning of the previous word, ignoring 
punctuation characters.

Ctrl-f or Page Down Down one page.

Ctrl-b or Page Up Up one page.

numberG To line number. For example, 1G moves to the first 
line of the file.

G To the last line of the file.

146



Moving the Cursor Around

Why are the  h,  j,  k, and  l keys used for cursor movement? When  vi was originally
written, not all video terminals had arrow keys, and skilled typists could use regular key-
board keys to move the cursor without ever having to lift their fingers from the keyboard.

Many commands in vi can be prefixed with a number, as with the “G” command listed
above. By prefixing a command with a number, we may specify the number of times a
command is to be carried out. For example, the command “5j” causes  vi to move the
cursor down five lines.

Basic Editing

Most editing consists of a few basic operations such as inserting text, deleting text, and
moving text around by cutting and pasting. vi, of course, supports all of these operations
in its own unique way. vi also provides a limited form of undo. If we press the “u” key
while in command mode, vi will undo the last change that you made. This will come in
handy as we try some of the basic editing commands.

Appending Text

vi has several different ways of entering insert mode. We have already used the i com-
mand to insert text.

Let's go back to our foo.txt file for a moment.

The quick brown fox jumped over the lazy dog.

If we wanted to add some text to the end of this sentence, we would discover that the i
command will not do it, since we can't move the cursor beyond the end of the line.  vi
provides a command to append text, the sensibly named a command. If we move the cur-
sor to the end of the line and type a, the cursor will move past the end of the line and vi
will enter insert mode. This will allow us to add some more text.

The quick brown fox jumped over the lazy dog. It was cool.

Remember to press the Esc key to exit insert mode.

Since we will almost always want to append text to the end of a line, vi offers a shortcut
to move to the end of the current line and start appending. It's the A command. Let's try it
and add some more lines to our file.

147



12 – A Gentle Introduction to vi

First, we'll move the cursor to the beginning of the line using the “0” (zero) command.
Now we type A and add the following lines of text:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Again, press the Esc key to exit insert mode.

As we can see, the “A” command is more useful as it moves the cursor to the end of the
line before starting insert mode.

Opening a Line

Another way we can insert text is by “opening” a line. This inserts a blank line between
two existing lines and enters insert mode. This has two variants as described in Table 12-
2.

Table 12-2: Line Opening Keys

Command Opens

o The line below the current line

O The line above the current line

We can demonstrate this as follows: place the cursor on “Line 3” then type o.

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3

Line 4
Line 5

A new line was opened below the third line and we entered insert mode. Exit insert mode
by pressing the Esc key. Press the u key to undo our change.

Press the O key to open the line above the cursor:

148



Basic Editing

The quick brown fox jumped over the lazy dog. It was cool.
Line 2

Line 3
Line 4
Line 5

Exit insert mode by pressing the Esc key and undo our change by pressing u.

Deleting Text

As we might expect, vi offers a variety of ways to delete text, all of which contain one
of two keystrokes. First, the x command will delete a character at the cursor location. x
may be preceded by a number specifying how many characters are to be deleted. The d
command is more general purpose. Like x, it may be preceded by a number specifying
the number of times the deletion is to be performed. In addition, d is always followed by
a movement command that controls the size of the deletion. Table 12-3 provides some ex-
amples: 

Table 12-3: Text Deletion Commands

Command Deletes

x The current character

3x The current character and the next two characters

dd The current line

5dd The current line and the next four lines

dW From the current cursor position to the beginning of 
the next word

d$ From the current cursor location to the end of the 
current line

d0 From the current cursor location to the beginning of 
the line

d^ From the current cursor location to the first non-
whitespace character in the line

dG From the current line to the end of the file

d20G From the current line to the twentieth line of the file

149



12 – A Gentle Introduction to vi

Place the cursor on the word It on the first line of our text. Press the x key repeatedly
until the rest of the sentence is deleted. Next, press the u key repeatedly until the deletion
is undone.

Note: Real vi supports only a single level of undo. vim supports multiple lev-
els.

Let's try the deletion again, this time using the d command. Again, move the cursor to the
word It and type dW to delete the word.

The quick brown fox jumped over the lazy dog. was cool.
Line 2
Line 3
Line 4
Line 5

Type d$ to delete from the cursor position to the end of the line.

The quick brown fox jumped over the lazy dog.
Line 2
Line 3
Line 4
Line 5

Press dG to delete from the current line to the end of the file.

~
~
~
~
~

Press u three times to undo the deletion.

Cutting, Copying, and Pasting Text

The d command not only deletes text, it also “cuts” text. Each time we use the d com-
mand, the deletion is copied into a paste buffer (think clipboard) that we can later recall

150



Basic Editing

with the p command to paste the contents of the buffer after the cursor or with the P com-
mand to paste the contents before the cursor.

The y command is used to “yank” (copy) text in much the same way the d command is
used to cut text. Table 12-4 provides some examples of combining the y command with
various movement commands:

Table 12- 4: Yanking Commands

Command Copies

yy The current line

5yy The current line and the next four lines

yW From the current cursor position to the beginning of 
the next word

y$ From the current cursor location to the end of the 
current line

y0 From the current cursor location to the beginning of 
the line

y^ From the current cursor location to the first non-
whitespace character in the line

yG From the current line to the end of the file

y20G From the current line to the twentieth line of the file

Let's try some copy-and-paste. Place the cursor on the first line of the text and type yy to
copy the current line. Next, move the cursor to the last line (G) and type p to paste the
line below the current line.

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5
The quick brown fox jumped over the lazy dog. It was cool.

Just as before, the u command will undo our change. With the cursor still positioned on
the last line of the file, type P to paste the text above the current line.

151



12 – A Gentle Introduction to vi

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
The quick brown fox jumped over the lazy dog. It was cool.
Line 5

Try some of the other  y commands in the Table 12-4 and get to know the behavior of
both the p and P commands. When you are done, return the file to its original state.

Joining Lines

vi is rather strict about its idea of a line. Normally, it is not possible to move the cursor
to the end of a line and delete the end-of-line character to join one line with the one be-
low it. Because of this, vi provides a specific command, J (not to be confused with j,
which is for cursor movement), to join lines together.

If we place the cursor on Line 3 and type the J command, here's what happens:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3 Line 4
Line 5

Search-and-Replace

vi has the ability to move the cursor to locations based on searches. It can do this either
on a single line or over an entire file. It can also perform text replacements with or with-
out confirmation from the user.

Searching Within a Line

The f command searches a line and moves the cursor to the next instance of a specified
character. For example, the command fa would move the cursor to the next occurrence
of the character  a within the current line. After performing a character search within a
line, the search may be repeated by typing a semicolon.

Searching the Entire File

To move the cursor to the next occurrence of a word or phrase, the / command is used.

152



Search-and-Replace

This works the same way as we learned earlier in the less program. When you type the
/ command, a / will appear at the bottom of the screen. Next, type the word or phrase to
be searched for, followed by the Enter key. The cursor will move to the next location
containing the search string. A search may be repeated using the previous search string
with the n command. Here's an example:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Place the cursor on the first line of the file. Type followed by the Enter key.

 /Line

The cursor will move to line 2. Next, type n and the cursor will move to line 3. Repeating
the n command will move the cursor down the file until it runs out of matches. While we
have so far used only words and phrases for our search patterns,  vi allows the use of
regular expressions,  a powerful method of expressing complex text patterns.  We will
cover regular expressions fully in chapter 19, “Regular Expressions.”

Global Search-and-Replace

vi uses an ex command to perform search-and-replace operations (called substitution in
vi) over a range of lines or the entire file. To change the word Line to line for the en-
tire file, we would enter the following command:

:%s/Line/line/g

Let's break down this command into separate items and see what each one does (see Ta-
ble 12-5).

Table 12- 5:An Example of Global Search-and-Replace Syntax

Item Meaning

: The colon character starts an ex command.

% This specifies the range of lines for the operation. % is a 

153



12 – A Gentle Introduction to vi

shortcut meaning from the first line to the last line. Alternately,
the range could have been specified 1,5 (since our file is five 
lines long) or 1,$, which means “from line 1 to the last line in
the file.” If the range of lines is omitted, the operation is 
performed only on the current line.

s This specifies the operation. In this case, it’s substitution 
(search-and-replace).

/Line/line/ This specifies the search pattern and the replacement text.

g This means “global” in the sense that the search-and-replace is
performed on every instance of the search string in the line. If 
omitted, only the first instance of the search string on each line
is replaced.

After executing our search-and-replace command, our file looks like this:

The quick brown fox jumped over the lazy dog. It was cool.
line 2
line 3
line 4
line 5

We can also specify a substitution command with user confirmation.  This is done by
adding a c to the end of the command. Here’s an example:

:%s/line/Line/gc

This command will change our file back to its previous form; however, before each sub-
stitution, vi stops and asks us to confirm the substitution with this message:

replace with Line (y/n/a/q/l/^E/^Y)?

Each of the characters within the parentheses is a possible choice,  as described in Table
12-6.

Table 12-6: Replace Confirmation Keys

Key Action

154



Search-and-Replace

y Perform the substitution.

n Skip this instance of the pattern.

a Perform the substitution on this and all subsequent instances 
of the pattern.

q or Esc Quit substituting.

l Perform this substitution and then quit. This is hort for “last.”

Ctrl-e, Ctrl-y Scroll down and scroll up, respectively. This is useful for 
viewing the context of the proposed substitution.

 

If you type y, the substitution will be performed, n will cause vi to skip this instance and
move on to the next one. 

Editing Multiple Files

It's often useful to edit more than one file at a time. You might need to make changes to
multiple files or you may need to copy content from one file into another. With vi we
can open multiple files for editing by specifying them on the command line.

vi file1 file2 file3...

Let's exit our existing vi session and create a new file for editing. Type :wq to exit vi,
saving our modified text. Next, we'll create an additional file in our home directory that
we can play with. We'll create the file by capturing some output from the ls command.

[me@linuxbox ~]$ ls -l /usr/bin > ls-output.txt

Let's edit our old file and our new one with vi.

[me@linuxbox ~]$ vi foo.txt ls-output.txt

vi will start, and we will see the first file on the screen.

155



12 – A Gentle Introduction to vi

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Switching Between Files

To switch from one file to the next, use this ex command:

:bn

To move back to the previous file use the following:

:bp

While we can move from one file to another, vi enforces a policy that prevents us from
switching files if the current file has unsaved changes. To force  vi to switch files and
abandon your changes, add an exclamation point (!) to the command.

In addition to the switching method described above,  vim (and some versions of  vi)
provides some ex commands that make multiple files easier to manage. We can view a
list of files being edited with the :buffers command. Doing so will display a list of the
files at the bottom of the display.

:buffers
  1 %a   "foo.txt"                      line 1
  2      "ls-output.txt"                line 0
Press ENTER or type command to continue 

To switch to another buffer (file), type :buffer followed by the number of the buffer
we want to edit. For example, to switch from buffer 1 containing the file  foo.txt to
buffer 2 containing the file ls-output.txt we would type this:

:buffer 2

Our screen now displays the second file. Another way we can change buffers is to use the

156



Editing Multiple Files

:bn (short for buffer next) and  :bp (short for buffer previous) commands mentioned
earlier.

Opening Additional Files for Editing

It's also possible to add files to our current editing session. The ex command :e (short for
“edit”) followed by a filename will open an additional file. Let's end our current editing
session and return to the command line.

Start vi again with just one file.

[me@linuxbox ~]$ vi foo.txt

To add our second file, enter the following:

:e ls-output.txt

It should appear on the screen. The first file is still present as we can verify.

:buffers
  1 #    "foo.txt"                      line 1
  2 %a   "ls-output.txt"                line 0
Press ENTER or type command to continue

Copying Content from One File into Another

Often while editing multiple files, we will want to copy a portion of one file into another
file that we are editing. This is easily done using the usual yank and paste commands we
used earlier. We can demonstrate as follows. First, using our two files, switch to buffer 1
(foo.txt) by entering this:

:buffer 1

That should give us this:

157



12 – A Gentle Introduction to vi

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Next, move the cursor to the first line, and type yy to yank (copy) the line.

Switch to the second buffer by entering the following:

:buffer 2

The screen will now contain some file listings like this (only a portion is shown here):

total 343700
-rwxr-xr-x 1 root root       31316 2017-12-05 08:58 [
-rwxr-xr-x 1 root root        8240 2017-12-09 13:39 411toppm
-rwxr-xr-x 1 root root      111276 2018-01-31 13:36 a2p
-rwxr-xr-x 1 root root       25368 2016-10-06 20:16 a52dec
-rwxr-xr-x 1 root root       11532 2017-05-04 17:43 aafire
-rwxr-xr-x 1 root root        7292 2017-05-04 17:43 aainfo

Move the cursor to the first line and paste the line we copied from the preceding file by
typing the p command.

total 343700
The quick brown fox jumped over the lazy dog. It was cool.
-rwxr-xr-x 1 root root       31316 2017-12-05 08:58 [
-rwxr-xr-x 1 root root        8240 2017-12-09 13:39 411toppm
-rwxr-xr-x 1 root root      111276 2018-01-31 13:36 a2p
-rwxr-xr-x 1 root root       25368 2016-10-06 20:16 a52dec
-rwxr-xr-x 1 root root       11532 2017-05-04 17:43 aafire
-rwxr-xr-x 1 root root        7292 2017-05-04 17:43 aainfo

Inserting an Entire File into Another

It's also possible to insert an entire file into one that we are editing. To see this in action,
let's end our vi session and start a new one with just a single file.

158



Editing Multiple Files

[me@linuxbox ~]$ vi ls-output.txt

We will see our file listing again.

total 343700
-rwxr-xr-x 1 root root       31316 2017-12-05 08:58 [
-rwxr-xr-x 1 root root        8240 2017-12-09 13:39 411toppm
-rwxr-xr-x 1 root root      111276 2018-01-31 13:36 a2p
-rwxr-xr-x 1 root root       25368 2016-10-06 20:16 a52dec
-rwxr-xr-x 1 root root       11532 2017-05-04 17:43 aafire
-rwxr-xr-x 1 root root        7292 2017-05-04 17:43 aainfo

Move the cursor to the third line, and then enter the following ex command:

:r foo.txt

The :r command (short for “read”) inserts the specified file below the cursor position.
Our screen should now look like this:

total 343700
-rwxr-xr-x 1 root root       31316 2017-12-05 08:58 [
-rwxr-xr-x 1 root root        8240 2017-12-09 13:39 411toppm
The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5
-rwxr-xr-x 1 root root      111276 2018-01-31 13:36 a2p
-rwxr-xr-x 1 root root       25368 2016-10-06 20:16 a52dec
-rwxr-xr-x 1 root root       11532 2017-05-04 17:43 aafire
-rwxr-xr-x 1 root root        7292 2017-05-04 17:43 aainfo

Saving Our Work

Like everything else in vi, there are several different ways to save our edited files. We
have already covered the ex command :w, but there are some others we may also find
helpful.

In command mode, typing  ZZ will save the current file and exit  vi. Likewise, the ex

159



12 – A Gentle Introduction to vi

command :wq will combine the :w and :q commands into one that will both save the
file and exit.

The :w command may also specify an optional filename. This acts like “Save As...” For
example, if we were editing  foo.txt and wanted to save an alternate version called
foo1.txt, we would enter the following:

:w foo1.txt

Note: While this command saves the file under a new name, it does not change
the name of the file we are editing. As we continue to edit, we will still be editing
foo.txt, not foo1.txt.

Summing Up

With this basic set of skills, we can now perform most of the text editing needed to main-
tain a typical Linux system. Learning to use vim on a regular basis will pay off in the
long run. Since vi-style editors are so deeply embedded in Unix culture, we will see many
other programs that have been influenced by its design. less is a good example of this
influence.

Further Reading

Even with all that we have covered in this chapter, we have barely scratched the surface
of what vi and vim can do. Here are a couple of on-line resources you can use to con-
tinue your journey towards vi mastery:

● Vim, with Vigor – A follow up tutorial to this one on LinuxCommand.org that 
brings the reader up to an intermediate level of skill. You can find it at:
http://linuxcommand.org/lc3_adv_vimvigor.php

● Learning The vi Editor – A Wikibook from Wikipedia that offers a concise guide 
to vi and several of its work-a-likes including vim. It's available at:
http://en.wikibooks.org/wiki/Vi

● The Vim Book - The vim project has a 570-page book that covers (almost) all of 
the features in vim. You can find it at:
ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf  .  

● A Wikipedia article on Bill Joy, the creator of vi.:
http://en.wikipedia.org/wiki/Bill_Joy

160

http://en.wikipedia.org/wiki/Bill_Joy
ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf
ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf
http://en.wikibooks.org/wiki/Vi
http://linuxcommand.org/lc3_adv_vimvigor.php


Further Reading

● A Wikipedia article on Bram Moolenaar, the author of vim:
http://en.wikipedia.org/wiki/Bram_Moolenaar

161

http://en.wikipedia.org/wiki/Bram_Moolenaar

