
11 – The Environment

11 – The Environment

As we discussed earlier, the shell maintains a body of information during our shell ses-
sion called the environment. Programs use data stored in the environment to determine
facts about the system's configuration. While most programs use configuration files to
store program settings, some programs also look for values stored in the environment to
adjust their behavior. Knowing this, we can use the environment to customize our shell
experience.

In this chapter, we will work with the following commands:

● printenv – Print part or all of the environment

● set – Set shell options

● export – Export environment to subsequently executed programs

● alias – Create an alias for a command

What is Stored in the Environment?

The shell stores two basic types of data in the environment; though, with bash, the
types are largely indistinguishable. They are environment variables and shell variables.
Shell variables are bits of data placed there by bash, and environment variables are ev-
erything else. In addition to variables, the shell stores some programmatic data, namely
aliases and shell functions. We covered aliases in Chapter 5, “Working with Commands.”
and we will cover shell functions (which are related to shell scripting) in Part 4.

Examining The Environment

To see what is stored in the environment, we can use either the set builtin in bash or
the printenv program. The set command will show both the shell and environment
variables, while printenv will only display the latter. Since the list of environment
contents will be fairly long, it is best to pipe the output of either command into less.

[me@linuxbox ~]$ printenv | less

128

What is Stored in the Environment?

Doing so, we should get that looks like this:

USER=me
PAGER=less
LSCOLORS=Gxfxcxdxbxegedabagacad
XDG_CONFIG_DIRS=/etc/xdg/xdg-ubuntu:/usr/share/upstart/xdg:/etc/xdg
PATH=/home/me/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/
sbin:/bin:/usr/games:/usr/local/games
DESKTOP_SESSION=ubuntu
QT_IM_MODULE=ibus
QT_QPA_PLATFORMTHEME=appmenu-qt5
JOB=dbus
PWD=/home/me
XMODIFIERS=@im=ibus
GNOME_KEYRING_PID=1850
LANG=en_US.UTF-8
GDM_LANG=en_US
MANDATORY_PATH=/usr/share/gconf/ubuntu.mandatory.path
 MASTER_HOST=linuxbox
IM_CONFIG_PHASE=1
COMPIZ_CONFIG_PROFILE=ubuntu
GDMSESSION=ubuntu
SESSIONTYPE=gnome-session
XDG_SEAT=seat0
HOME=/home/me
SHLVL=2
LANGUAGE=en_US
GNOME_DESKTOP_SESSION_ID=this-is-deprecated
LESS=-R
LOGNAME=me
COMPIZ_BIN_PATH=/usr/bin/
LC_CTYPE=en_US.UTF-8
XDG_DATA_DIRS=/usr/share/ubuntu:/usr/share/gnome:/usr/local/share/:/
usr/share/
QT4_IM_MODULE=xim
DBUS_SESSION_BUS_ADDRESS=unix:abstract=/tmp/dbus-IwaesmWaT0
LESSOPEN=| /usr/bin/lesspipe %s
INSTANCE=

What we see is a list of environment variables and their values. For example, we see a
variable called USER, which contains the value me. The printenv command can also
list the value of a specific variable.

129

mailto:XMODIFIERS%3D@im

11 – The Environment

[me@linuxbox ~]$ printenv USER
me

The set command, when used without options or arguments, will display both the shell
and environment variables, as well as any defined shell functions. Unlike printenv, its
output is courteously sorted in alphabetical order.

[me@linuxbox ~]$ set | less

It is also possible to view the contents of a variable using the echo command, like this:

[me@linuxbox ~]$ echo $HOME
/home/me

One element of the environment that neither set nor printenv displays is aliases. To
see them, enter the alias command without arguments.

[me@linuxbox ~]$ alias
alias l.='ls -d .* --color=tty'
alias ll='ls -l --color=tty'
alias ls='ls --color=tty'
alias vi='vim'
alias which='alias | /usr/bin/which --tty-only --read-alias --show-
dot --show-tilde'

Some Interesting Variables

The environment contains quite a few variables, and though the environment will differ
from the one presented here, we will likely see the variables listed in Table 11-1 in our
environment.

Table 11-1: Environment Variables

Variable Contents

DISPLAY The name of the display if we are running a graphical environment.
Usually this is “:0”, meaning the first display generated by the X
server.

130

What is Stored in the Environment?

EDITOR The name of the program to be used for text editing.

SHELL The name of the user’s default shell program.

HOME The pathname of your home directory.

LANG Defines the character set and collation order of your language.

OLDPWD The previous working directory.

PAGER The name of the program to be used for paging output. This is often
set to /usr/bin/less.

PATH A colon-separated list of directories that are searched when we enter
the name of a executable program.

PS1 This stands for “prompt string 1.” This defines the contents of the
shell prompt. As we will later see, this can be extensively
customized.

PWD The current working directory.

TERM The name of your terminal type. Unix-like systems support many
terminal protocols; this variable sets the protocol to be used with
your terminal emulator.

TZ Specifies your time zone. Most Unix-like systems maintain the
computer’s internal clock in Coordinated Universal Time (UTC)
and then display the local time by applying an offset specified by
this variable.

USER Your username.

Don't worry if some of these values are missing. They vary by distribution.

How Is The Environment Established?

When we log on to the system, the bash program starts, and reads a series of configura-
tion scripts called startup files, which define the default environment shared by all users.
This is followed by more startup files in our home directory that define our personal envi-
ronment. The exact sequence depends on the type of shell session being started. There are
two kinds.

• A login shell session A login shell session is one in which we are prompted for
our username and password. This happens when we start a virtual console session,
for example.

• A non-login shell session A non-login shell session typically occurs when we

131

11 – The Environment

launch a terminal session in the GUI.

Login shells read one or more startup files as shown in Table 11-2.

Table 11-2: Startup Files for Login Shell Sessions

File Contents

/etc/profile A global configuration script that applies to all users.

~/.bash_profile A user's personal startup file. This can be used to extend
or override settings in the global configuration script.

~/.bash_login If ~/.bash_profile is not found, bash attempts to
read this script.

~/.profile If neither ~/.bash_profile nor ~/.bash_login
is found, bash attempts to read this file. This is the
default in Debian-based distributions, such as Ubuntu.

Non-login shell sessions read the startup files listed in Table 11-3.

Table 11-3: Startup Files for Non-Login Shell Sessions

File Contents

/etc/bash.bashrc A global configuration script that applies to all users.

~/.bashrc A user's personal startup file. It can be used to extend or
override settings in the global configuration script.

In addition to reading the startup files in Table 11-3, non-login shells inherit the environ-
ment from their parent process, usually a login shell.

Take a look and see which of these startup files are installed. Remember — since most of
the filenames listed above start with a period (meaning that they are hidden), we will
need to use the “-a” option when using ls.

The ~/.bashrc file is probably the most important startup file from the ordinary user’s
point of view, since it is almost always read. Non-login shells read it by default and most
startup files for login shells are written in such a way as to read the ~/.bashrc file as
well.

What's in a Startup File?

If we take a look inside a typical .bash_profile (taken from a CentOS 6 system), it

132

How Is The Environment Established?

looks something like this:

.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin
export PATH

Lines that begin with a “#” are comments and are not read by the shell. These are there
for human readability. The first interesting thing occurs on the fourth line, with the fol-
lowing code:

if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

This is called an if compound command, which we will cover fully when we get to shell
scripting in Part 4, but for now, here is a translation:

If the file "~/.bashrc" exists, then
read the "~/.bashrc" file.

We can see that this bit of code is how a login shell gets the contents of .bashrc. The
next thing in our startup file has to do with the PATH variable.

Ever wonder how the shell knows where to find commands when we enter them on the
command line? For example, when we enter ls, the shell does not search the entire com-
puter to find /bin/ls (the full pathname of the ls command); rather, it searches a list
of directories that are contained in the PATH variable.

The PATH variable is often (but not always, depending on the distribution) set by the /
etc/profile startup file with this code:

133

11 – The Environment

PATH=$PATH:$HOME/bin

PATH is modified to add the directory $HOME/bin to the end of the list. This is an ex-
ample of parameter expansion, which we touched on in Chapter 7. “Seeing the World As
tthe Shell Sees It.” To demonstrate how this works, try the following:

[me@linuxbox ~]$ foo="This is some "
[me@linuxbox ~]$ echo $foo
This is some
[me@linuxbox ~]$ foo=$foo"text."
[me@linuxbox ~]$ echo $foo
This is some text.

Using this technique, we can append text to the end of a variable's contents.

By adding the string $HOME/bin to the end of the PATH variable's contents, the direc-
tory $HOME/bin is added to the list of directories searched when a command is entered.
This means that when we want to create a directory within our home directory for storing
our own private programs, the shell is ready to accommodate us. All we have to do is call
it bin, and we’re ready to go.

Note: Many distributions provide this PATH setting by default. Debian based dis-
tributions, such as Ubuntu, test for the existence of the ~/bin directory at login
and dynamically add it to the PATH variable if the directory is found.

Lastly, we have:

export PATH

The export command tells the shell to make the contents of PATH available to child
processes of this shell.

Modifying the Environment

Since we know where the startup files are and what they contain, we can modify them to
customize our environment.

134

Modifying the Environment

Which Files Should We Modify?

As a general rule, to add directories to your PATH or define additional environment vari-
ables, place those changes in .bash_profile (or the equivalent, according to your
distribution; for example, Ubuntu uses .profile). For everything else, place the
changes in .bashrc.

Note: Unless you are the system administrator and need to change the defaults
for all users of the system, restrict your modifications to the files in your home
directory. It is certainly possible to change the files in /etc such as profile,
and in many cases it would be sensible to do so, but for now, let's play it safe.

Text Editors

To edit (i.e., modify) the shell's startup files, as well as most of the other configuration
files on the system, we use a program called a text editor. A text editor is a program that
is, in some ways, like a word processor in that it allows us to edit the words on the screen
with a moving cursor. It differs from a word processor by only supporting pure text and
often contains features designed for writing programs. Text editors are the central tool
used by software developers to write code and by system administrators to manage the
configuration files that control the system.

A lot of different text editors are available for Linux; most systems have several installed.
Why so many different ones? Because programmers like writing them and since pro-
grammers use them extensively, they write editors to express their own desires as to how
they should work.

Text editors fall into two basic categories: graphical and text based. GNOME and KDE
both include some popular graphical editors. GNOME ships with an editor called gedit,
which is usually called “Text Editor” in the GNOME menu. KDE usually ships with
three, which are (in order of increasing complexity) kedit, kwrite, and kate.

There are many text-based editors. The popular ones we'll encounter are nano, vi, and
emacs. The nano editor is a simple, easy-to-use editor designed as a replacement for
the pico editor supplied with the PINE email suite. The vi editor (which on most Linux
systems replaced by a program named vim, which is short for “vi improved”) is the tra-
ditional editor for Unix-like systems. It will be the subject of our next chapter. The
emacs editor was originally written by Richard Stallman. It is a gigantic, all-purpose,
does-everything programming environment. While readily available, it is seldom installed
on most Linux systems by default.

135

11 – The Environment

Using a Text Editor

Text editors can be invoked from the command line by typing the name of the editor fol-
lowed by the name of the file we want to edit. If the file does not already exist, the editor
will assume that we want to create a new file. Here is an example using gedit:

[me@linuxbox ~]$ gedit some_file

This command will start the gedit text editor and load the file named “some_file”, if it
exists.

Graphical text editors are pretty self-explanatory, so we won't cover them here. Instead,
we will concentrate on our first text-based text editor, nano. Let's fire up nano and edit
the .bashrc file. But before we do that, let's practice some “safe computing.” When-
ever we edit an important configuration file, it is always a good idea to create a backup
copy of the file first. This protects us in case we mess up the file while editing. To create
a backup of the .bashrc file, do this:

[me@linuxbox ~]$ cp .bashrc .bashrc.bak

It doesn't matter what we call the backup file; just pick an understandable name. The ex-
tensions “.bak”, “.sav”, “.old”, and “.orig” are all popular ways of indicating a backup
file. Oh, and remember that cp will overwrite existing files silently.

Now that we have a backup file, we'll start the editor.

[me@linuxbox ~]$ nano .bashrc

Once nano starts, we’ll get a screen like this:

 GNU nano 2.0.3 File: .bashrc

.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

136

Modifying the Environment

User specific aliases and functions

 [Read 8 lines]
^G Get Help^O WriteOut^R Read Fil^Y Prev Pag^K Cut Text^C Cur Pos
^X Exit ^J Justify ^W Where Is^V Next Pag^U UnCut Te^T To Spell

Note: If your system does not have nano installed, you may use a graphical edi-
tor instead.

The screen consists of a header at the top, the text of the file being edited in the middle,
and a menu of commands at the bottom. Since nano was designed to replace the text edi-
tor supplied with an email client, it is rather short on editing features.

The first command we should learn in any text editor is how to exit the program. In the
case of nano, we press Ctrl-x to exit. This is indicated in the menu at the bottom of
the screen. The notation ^X means Ctrl-x. This is a common notation for control char-
acters used by many programs.

The second command we need to know is how to save our work. With nano it's Ctrl-
o. With this knowledge, we're ready to do some editing. Using the down arrow key and/
or the PageDown key, move the cursor to the end of the file, and then add the following
lines to the .bashrc file:

umask 0002
export HISTCONTROL=ignoredups
export HISTSIZE=1000
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'

Note: Your distribution may already include some of these, but duplicates won't

137

11 – The Environment

hurt anything.

Table 11-4 details the meaning of our additions:

Table 11-4: Additions to Our .bashrc

Line Meaning

umask 0002 Sets the umask to solve the
problem with the shared
directories we discussed in
Chapter 9, “Permissions.”

export HISTCONTROL=ignoredups Causes the shell's history
recording feature to ignore a
command if the same command
was just recorded.

export HISTSIZE=1000 Increases the size of the command
history from the usual default of
500 lines to 1,000 lines.

alias l.='ls -d .* --color=auto' Creates a new command called
l., which displays all directory
entries that begin with a dot.

alias ll='ls -l --color=auto' Creates a new command called
ll, which displays a long-format
directory listing.

As we can see, many of our additions are not intuitively obvious, so it would be a good
idea to add some comments to our .bashrc file to help explain things to the humans.
Using the editor, change our additions to look like this:

138

Modifying the Environment

Change umask to make directory sharing easier
umask 0002

Ignore duplicates in command history and increase
history size to 1000 lines
export HISTCONTROL=ignoredups
export HISTSIZE=1000

Add some helpful aliases
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'

Ah, much better! With our changes complete, press Ctrl-o to save our modified
.bashrc file, and press Ctrl-x to exit nano.

Why Comments Are Important

Whenever you modify configuration files it's a good idea to add some comments
to document your changes. Sure, you'll probably remember what you changed to-
morrow, but what about six months from now? Do yourself a favor and add some
comments. While you're at it, it’s not a bad idea to keep a log of what changes
you make.

Shell scripts and bash startup files use a “#” symbol to begin a comment. Other
configuration files may use other symbols. Most configuration files will have
comments. Use them as a guide.

You will often see lines in configuration files that are commented out to prevent
them from being used by the affected program. This is done to give the reader
suggestions for possible configuration choices or examples of correct configura-
tion syntax. For example, the .bashrc file of Ubuntu 18.04 contains these lines:

some more ls aliases
#alias ll='ls -l'
#alias la='ls -A'
#alias l='ls -CF'

The last three lines are valid alias definitions that have been commented out. If
you remove the leading “#” symbols from these three lines, a technique called un-
commenting, you will activate the aliases. Conversely, if you add a “#” symbol to

139

11 – The Environment

the beginning of a line, you can deactivate a configuration line while preserving
the information it contains.

Activating Our Changes

The changes we have made to our .bashrc will not take effect until we close our termi-
nal session and start a new one because the .bashrc file is only read at the beginning of
a session. However, we can force bash to reread the modified .bashrc file with the
following command:

[me@linuxbox ~]$ source ~/.bashrc

After doing this, we should be able to see the effect of our changes. Try one of the new
aliases.

[me@linuxbox ~]$ ll

Summing Up

In this chapter, we learned an essential skill — editing configuration files with a text edi-
tor. Moving forward, as we read man pages for commands, take note of the environment
variables that commands support. There may be a gem or two. In later chapters, we will
learn about shell functions, a powerful feature that you can also include in the bash
startup files to add to your arsenal of custom commands.

Further Reading

● The INVOCATION section of the bash man page covers the bash startup files
in gory detail.

140

