
9 – Permissions

9 – Permissions

Operating systems in the Unix tradition differ from those in the MS-DOS tradition in that
they are not only multitasking systems, but also multi-user systems.

What exactly does this mean? It means that more than one person can be using the com-
puter at the same time. While a typical computer will likely have only one keyboard and
monitor, it can still be used by more than one user. For example, if a computer is attached
to a network or the Internet, remote users can log in via ssh (secure shell) and operate
the computer. In fact, remote users can execute graphical applications and have the
graphical output appear on a remote display. The X Window System supports this as part
of its basic design.

The multiuser capability of Linux is not a recent "innovation," but rather a feature that is
deeply embedded into the design of the operating system. Considering the environment in
which Unix was created, this makes perfect sense. Years ago, before computers were
"personal," they were large, expensive, and centralized. A typical university computer
system, for example, consisted of a large central computer located in one building and
terminals that were located throughout the campus, each connected to the large central
computer. The computer would support many users at the same time.

To make this practical, a method had to be devised to protect the users from each other.
After all, the actions of one user could not be allowed to crash the computer, nor could
one user interfere with the files belonging to another user.

In this chapter we will look at this essential part of system security and introduce the fol-
lowing commands:

● id – Display user identity

● chmod – Change a file's mode

● umask – Set the default file permissions

● su – Run a shell as another user

● sudo – Execute a command as another user

● chown – Change a file's owner

90

9 – Permissions

● chgrp – Change a file's group ownership

● passwd – Change a user's password

Owners, Group Members, and Everybody Else

When we were exploring the system in Chapter 3, we may have encountered a problem
when trying to examine a file such as /etc/shadow:

[me@linuxbox ~]$ file /etc/shadow
/etc/shadow: regular file, no read permission
[me@linuxbox ~]$ less /etc/shadow
/etc/shadow: Permission denied

The reason for this error message is that, as regular users, we do not have permission to
read this file.

In the Unix security model, a user may own files and directories. When a user owns a file
or directory, the user has control over its access. Users can, in turn, belong to a group
consisting of one or more users who are given access to files and directories by their
owners. In addition to granting access to a group, an owner may also grant some set of
access rights to everybody, which in Unix terms is referred to as the world. To find out in-
formation about your identity, use the id command.

[me@linuxbox ~]$ id
uid=500(me) gid=500(me) groups=500(me)

Let's look at the output. When user accounts are created, users are assigned a number
called a user ID (uid) which is then, for the sake of the humans, mapped to a username.
The user is assigned a primary group ID (gid) and may belong to additional groups. The
above example is from a Fedora system. On other systems, such as Ubuntu, the output
may look a little different:

[me@linuxbox ~]$ id
uid=1000(me) gid=1000(me)
groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(v
ideo),46(plugdev),108(lpadmin),114(admin),1000(me)

As we can see, the uid and gid numbers are different. This is simply because Fedora starts
its numbering of regular user accounts at 500, while Ubuntu starts at 1000. We can also

91

9 – Permissions

see that the Ubuntu user belongs to a lot more groups. This has to do with the way
Ubuntu manages privileges for system devices and services.

So where does this information come from? Like so many things in Linux, it comes from
a couple of text files. User accounts are defined in the /etc/passwd file and groups
are defined in the /etc/group file. When user accounts and groups are created, these
files are modified along with /etc/shadow which holds information about the user's
password. For each user account, the /etc/passwd file defines the user (login) name,
uid, gid, account's real name, home directory, and login shell. If we examine the contents
of /etc/passwd and /etc/group, we notice that besides the regular user accounts,
there are accounts for the superuser (uid 0) and various other system users.

In the next chapter, when we cover processes, we will see that some of these other
“users” are, in fact, quite busy.

While many Unix-like systems assign regular users to a common group such as “users”,
modern Linux practice is to create a unique, single-member group with the same name as
the user. This makes certain types of permission assignment easier.

Reading, Writing, and Executing

Access rights to files and directories are defined in terms of read access, write access, and
execution access. If we look at the output of the ls command, we can get some clue as to
how this is implemented:

[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-rw-r-- 1 me me 0 2016-03-06 14:52 foo.txt

The first 10 characters of the listing are the file attributes. The first of these characters is
the file type. Table 9-1 describes the file types we are most likely to see (there are other,
less common types too):

Table 9-1: File Types

Attribute File Type

- A regular file.

d A directory.

l A symbolic link. Notice that with symbolic links, the remaining file
attributes are always “rwxrwxrwx” and are dummy values. The real
file attributes are those of the file the symbolic link points to.

92

Reading, Writing, and Executing

c A character special file. This file type refers to a device that
handles data as a stream of bytes, such as a terminal or
/dev/null.

b A block special file. This file type refers to a device that handles
data in blocks, such as a hard drive or DVD drive.

The remaining nine characters of the file attributes, called the file mode, represent the
read, write, and execute permissions for the file's owner, the file's group owner, and
everybody else.

Owner Group World

rwx rwx rwx

Table 9-2 describes the effect the r, w, and x mode attributes have on files and directo-
ries:

Table 9-2: Permission Attributes

Attribute Files Directories

r Allows a file to be opened and
read.

Allows a directory's contents to
be listed if the execute attribute
is also set.

w Allows a file to be written to or
truncated, however this attribute
does not allow files to be
renamed or deleted. The ability
to delete or rename files is
determined by directory
attributes.

Allows files within a directory
to be created, deleted, and
renamed if the execute attribute
is also set.

x Allows a file to be treated as a
program and executed. Program
files written in scripting
languages must also be set as
readable to be executed.

Allows a directory to be
entered, e.g., cd directory.

Table 9-3 provides some examples of file attribute settings:

93

9 – Permissions

Table 9-3: Permission Attribute Examples

File Attributes Meaning

-rwx------ A regular file that is readable, writable, and executable by the
file's owner. No one else has any access.

-rw------- A regular file that is readable and writable by the file's owner.
No one else has any access.

-rw-r--r-- A regular file that is readable and writable by the file's owner.
Members of the file's owner group may read the file. The file is
world-readable.

-rwxr-xr-x A regular file that is readable, writable, and executable by the
file's owner. The file may be read and executed by everybody
else.

-rw-rw---- A regular file that is readable and writable by the file's owner
and members of the file's group owner only.

lrwxrwxrwx A symbolic link. All symbolic links have “dummy”
permissions. The real permissions are kept with the actual file
pointed to by the symbolic link.

drwxrwx--- A directory. The owner and the members of the owner group
may enter the directory and create, rename and remove files
within the directory.

drwxr-x--- A directory. The owner may enter the directory and create,
rename, and delete files within the directory. Members of the
owner group may enter the directory but cannot create, delete,
or rename files.

chmod – Change File Mode

To change the mode (permissions) of a file or directory, the chmod command is used. Be
aware that only the file’s owner or the superuser can change the mode of a file or direc-
tory. chmod supports two distinct ways of specifying mode changes: octal number repre-
sentation, or symbolic representation. We will cover octal number representation first.

94

Reading, Writing, and Executing

What the Heck is Octal?

Octal (base 8), and its cousin, hexadecimal (base 16) are number systems often
used to express numbers on computers. We humans, owing to the fact that we (or
at least most of us) were born with 10 fingers, count using a base 10 number sys-
tem. Computers, on the other hand, were born with only one finger and thus do
all their counting in binary (base 2). Their number system has only two numerals,
0 and 1. So, in binary, counting looks like this:

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011...

In octal, counting is done with the numerals zero through seven, like so:

0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21...

Hexadecimal counting uses the numerals zero through nine plus the letters “A”
through “F”:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, 13...

While we can see the sense in binary (since computers have only one finger),
what are octal and hexadecimal good for? The answer has to do with human con-
venience. Many times, small portions of data are represented on computers as bit
patterns. Take for example an RGB color. On most computer displays, each pixel
is composed of three color components: eight bits of red, eight bits of green, and
eight bits of blue. A lovely medium blue would be a 24 digit number:

010000110110111111001101

How would you like to read and write those kinds of numbers all day? I didn't
think so. Here's where another number system would help. Each digit in a hexa-
decimal number represents four digits in binary. In octal, each digit represents
three binary digits. So our 24 digit medium blue could be condensed to a six-digit
hexadecimal number:

436FCD

Since the digits in the hexadecimal number “line up” with the bits in the binary
number, we can see that the red component of our color is 43, the green 6F, and
the blue CD.

These days, hexadecimal notation (often spoken as “hex”) is more common than
octal, but as we will soon see, octal's ability to express three bits of binary will be
very useful...

With octal notation, we use octal numbers to set the pattern of desired permissions. Since
each digit in an octal number represents three binary digits, this maps nicely to the

95

9 – Permissions

scheme used to store the file mode. Table 9-4 shows what we mean.

Table 9-4: File Modes in Binary and Octal

Octal Binary File Mode

0 000 ---

1 001 --x

2 010 -w-

3 011 -wx

4 100 r--

5 101 r-x

6 110 rw-

7 111 rwx

By using three octal digits, we can set the file mode for the owner, group owner, and
world.

[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-rw-r-- 1 me me 0 2016-03-06 14:52 foo.txt
[me@linuxbox ~]$ chmod 600 foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw------- 1 me me 0 2016-03-06 14:52 foo.txt

By passing the argument “600”, we were able to set the permissions of the owner to read
and write while removing all permissions from the group owner and world. Though re-
membering the octal to binary mapping may seem inconvenient, we will usually have
only to use a few common ones: 7 (rwx), 6 (rw-), 5 (r-x), 4 (r--), and 0 (---).

chmod also supports a symbolic notation for specifying file modes. Symbolic notation is
divided into three parts.

• Who the change will affect

• Which operation will be performed

• What permission will be set.

To specify who is affected, a combination of the characters “u”, “g”, “o”, and “a” is used
as shown in Table 9-5.

96

Reading, Writing, and Executing

Table 9-5: chmod Symbolic Notation

Symbol Meaning

u Short for “user” but means the file or directory owner.

g Group owner.

o Short for “others” but means world.

a Short for “all.” This is the combination of “u”, “g”, and “o”.

If no character is specified, “all” will be assumed. The operation may be a “+” indicating
that a permission is to be added, a “-” indicating that a permission is to be taken away, or
a “=” indicating that only the specified permissions are to be applied and that all others
are to be removed.

Permissions are specified with the “r”, “w”, and “x” characters. Table 9-6 provides some
examples of symbolic notation:

Table 9-6: chmod Symbolic Notation Examples

Notation Meaning

u+x Add execute permission for the owner.

u-x Remove execute permission from the owner.

+x Add execute permission for the owner, group, and world. This is
equivalent to a+x.

o-rw Remove the read and write permissions from anyone besides the
owner and group owner.

go=rw Set the group owner and anyone besides the owner to have read and
write permission. If either the group owner or the world previously
had execute permission, it is removed.

u+x,go=rx Add execute permission for the owner and set the permissions for
the group and others to read and execute. Multiple specifications
may be separated by commas.

Some people prefer to use octal notation, and some folks really like the symbolic. Sym-
bolic notation does offer the advantage of allowing us to set a single attribute without dis-
turbing any of the others.

Take a look at the chmod man page for more details and a list of options. A word of cau-
tion regarding the “--recursive” option: it acts on both files and directories, so it's not as

97

9 – Permissions

useful as we would hope since we rarely want files and directories to have the same per-
missions.

Setting File Mode with the GUI

Now that we have seen how the permissions on files and directories are set, we can better
understand the permission dialogs in the GUI. In both Files (GNOME) and Dolphin
(KDE), right-clicking a file or directory icon will expose a properties dialog. Here is an
example from GNOME:

Here we can see the settings for the owner, group, and world.

umask – Set Default Permissions

The umask command controls the default permissions given to a file when it is created.
It uses octal notation to express a mask of bits to be removed from a file's mode at-
tributes. Let's take a look.

98

Figure 2: GNOME file
permissions dialog

Reading, Writing, and Executing

[me@linuxbox ~]$ rm -f foo.txt
[me@linuxbox ~]$ umask
0002
[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-rw-r-- 1 me me 0 2018-03-06 14:53 foo.txt

We first removed any old copy of foo.txt to make sure we were starting fresh. Next,
we ran the umask command without an argument to see the current value. It responded
with the value 0002 (the value 0022 is another common default value), which is the oc-
tal representation of our mask. We next create a new instance of the file foo.txt and
observe its permissions.

We can see that both the owner and group get read and write permission, while everyone
else only gets read permission. The reason that world does not have write permission is
because of the value of the mask. Let's repeat our example, this time setting the mask our-
selves.

[me@linuxbox ~]$ rm foo.txt
[me@linuxbox ~]$ umask 0000
[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-rw-rw- 1 me me 0 2018-03-06 14:58 foo.txt

When we set the mask to 0000 (effectively turning it off), we see that the file is now
world writable. To understand how this works, we have to look at octal numbers again. If
we take the mask, expand it into binary, and then compare it to the attributes we can see
what happens.

Original file mode --- rw- rw- rw-

Mask 000 000 000 010

Result --- rw- rw- r--

Ignore for the moment the leading zeros (we'll get to those in a minute) and observe that
where the 1 appears in our mask, an attribute was removed — in this case, the world write
permission. That's what the mask does. Everywhere a 1 appears in the binary value of the
mask, an attribute is unset. If we look at a mask value of 0022, we can see what it does.

99

9 – Permissions

Original file mode --- rw- rw- rw-

Mask 000 000 010 010

Result --- rw- r-- r--

Again, where a 1 appears in the binary value, the corresponding attribute is unset. Play
with some values (try some sevens) to get used to how this works. When you're done, re-
member to clean up.

[me@linuxbox ~]$ rm foo.txt; umask 0002

Most of the time we won't have to change the mask; the default provided by the distribu-
tion will be fine. In some high-security situations, however, we will want to control it.

Some Special Permissions

Though we usually see an octal permission mask expressed as a three-digit num-
ber, it is more technically correct to express it in four digits. Why? Because, in ad-
dition to read, write, and execute permission, there are some other, less used, per-
mission settings.

The first of these is the setuid bit (octal 4000). When applied to an executable file,
it sets the effective user ID from that of the real user (the user actually running the
program) to that of the program's owner. Most often this is given to a few pro-
grams owned by the superuser. When an ordinary user runs a program that is “se-
tuid root” , the program runs with the effective privileges of the superuser. This
allows the program to access files and directories that an ordinary user would nor-
mally be prohibited from accessing. Clearly, because this raises security concerns,
the number of setuid programs must be held to an absolute minimum.

The second less-used setting is the setgid bit (octal 2000), which, like the setuid
bit, changes the effective group ID from the real group ID of the real user to that
of the file owner. If the setgid bit is set on a directory, newly created files in the
directory will be given the group ownership of the directory rather the group own-
ership of the file's creator. This is useful in a shared directory when members of a
common group need access to all the files in the directory, regardless of the file
owner's primary group.

The third is called the sticky bit (octal 1000). This is a holdover from ancient
Unix, where it was possible to mark an executable file as “not swappable.” On

100

Reading, Writing, and Executing

files, Linux ignores the sticky bit, but if applied to a directory, it prevents users
from deleting or renaming files unless the user is either the owner of the directory,
the owner of the file, or the superuser. This is often used to control access to a
shared directory, such as /tmp.

Here are some examples of using chmod with symbolic notation to set these spe-
cial permissions. Here’s an example of assigning setuid to a program:

chmod u+s program

Next, here’s and example of assigning setgid to a directory:

chmod g+s dir

Finally, here’s an example of assigning the sticky bit to a directory:

chmod +t dir

When viewing the output from ls, you can determine the special permissions.
Here are some examples. First, an example of a program that is setuid:

-rwsr-xr-x

Here’s an example of a directory that has the setgid attribute:

drwxrwsr-x

Here’s an example of a directory with the sticky bit set:

drwxrwxrwt

Changing Identities

At various times, we may find it necessary to take on the identity of another user. Often
we want to gain superuser privileges to carry out some administrative task, but it is also
possible to “become” another regular user for such things as testing an account. There are
three ways to take on an alternate identity.

1. Log out and log back in as the alternate user.

2. Use the su command.

3. Use the sudo command.

We will skip the first technique since we know how to do it and it lacks the convenience
of the other two. From within our own shell session, the su command allows us to as-
sume the identity of another user and either start a new shell session with that user's ID,
or to issue a single command as that user. The sudo command allows an administrator to
set up a configuration file called /etc/sudoers and define specific commands that

101

9 – Permissions

particular users are permitted to execute under an assumed identity. The choice of which
command to use is largely determined by which Linux distribution you use. Your distri-
bution probably includes both commands, but its configuration will favor either one or
the other. We'll start with su.

su – Run a Shell with Substitute User and Group IDs

The su command is used to start a shell as another user. The command syntax looks like
this:

su [-[l]] [user]

If the “-l” option is included, the resulting shell session is a login shell for the specified
user. This means the user's environment is loaded and the working directory is changed to
the user's home directory. This is usually what we want. If the user is not specified, the
superuser is assumed. Notice that (strangely) the -l may be abbreviated as -, which is
how it is most often used. To start a shell for the superuser, we would do this:

[me@linuxbox ~]$ su -
Password:
[root@linuxbox ~]#

After entering the command, we are prompted for the superuser's password. If it is suc-
cessfully entered, a new shell prompt appears indicating that this shell has superuser priv-
ileges (the trailing # rather than a $), and the current working directory is now the home
directory for the superuser (normally /root). Once in the new shell, we can carry out
commands as the superuser. When finished, enter exit to return to the previous shell.

[root@linuxbox ~]# exit
[me@linuxbox ~]$

It is also possible to execute a single command rather than starting a new interactive com-
mand by using su this way.

su -c 'command'

Using this form, a single command line is passed to the new shell for execution. It is im-

102

Changing Identities

portant to enclose the command in quotes, as we do not want expansion to occur in our
shell, but rather in the new shell.

[me@linuxbox ~]$ su -c 'ls -l /root/*'
Password:
-rw------- 1 root root 754 2007-08-11 03:19 /root/anaconda-ks.cfg

/root/Mail:
total 0
[me@linuxbox ~]$

sudo – Execute a Command as Another User

The sudo command is like su in many ways but has some important additional capabili-
ties. The administrator can configure sudo to allow an ordinary user to execute com-
mands as a different user (usually the superuser) in a controlled way. In particular, a user
may be restricted to one or more specific commands and no others. Another important
difference is that the use of sudo does not require access to the superuser's password. To
authenticating using sudo, requires the user’s own password. Let's say, for example, that
sudo has been configured to allow us to run a fictitious backup program called
“backup_script”, which requires superuser privileges. With sudo it would be done like
this:

[me@linuxbox ~]$ sudo backup_script
Password:
System Backup Starting...

After entering the command, we are prompted for our password (not the superuser's) and
once the authentication is complete, the specified command is carried out. One important
difference between su and sudo is that sudo does not start a new shell, nor does it load
another user's environment. This means that commands do not need to be quoted any dif-
ferently than they would be without using sudo. Note that this behavior can be overrid-
den by specifying various options. Note, too, that sudo can be used to start an interactive
superuser session (much like su -) by using the -i option. See the sudo man page for
details.

To see what privileges are granted by sudo, use the -l option to list them:

[me@linuxbox ~]$ sudo -l

103

9 – Permissions

User me may run the following commands on this host:
 (ALL) ALL

Ubuntu and sudo

One of the recurrent problems for regular users is how to perform certain tasks
that require superuser privileges. These tasks include installing and updating soft-
ware, editing system configuration files, and accessing devices. In the Windows
world, this is often done by giving users administrative privileges. This allows
users to perform these tasks. However, it also enables programs executed by the
user to have the same abilities. This is desirable in most cases, but it also permits
malware (malicious software) such as viruses to have free rein of the computer.

In the Unix world, there has always been a larger division between regular users
and administrators, owing to the multiuser heritage of Unix. The approach taken
in Unix is to grant superuser privileges only when needed. To do this, the su and
sudo commands are commonly used.

Up until a few of years ago, most Linux distributions relied on su for this pur-
pose. su didn't require the configuration that sudo required, and having a root
account is traditional in Unix. This introduced a problem. Users were tempted to
operate as root unnecessarily. In fact, some users operated their systems as the
root user exclusively, since it does away with all those annoying “permission de-
nied” messages. This is how you reduce the security of a Linux system to that of a
Windows system. Not a good idea.

When Ubuntu was introduced, its creators took a different tack. By default,
Ubuntu disables logins to the root account (by failing to set a password for the ac-
count) and instead uses sudo to grant superuser privileges. The initial user ac-
count is granted full access to superuser privileges via sudo and may grant simi-
lar powers to subsequent user accounts.

chown – Change File Owner and Group

The chown command is used to change the owner and group owner of a file or directory.
Superuser privileges are required to use this command. The syntax of chown looks like
this:

104

Changing Identities

chown [owner][:[group]] file...

chown can change the file owner and/or the file group owner depending on the first ar-
gument of the command. Table 9-7 provides some examples.

Table 9-7: chown Argument Examples

Argument Results

bob Changes the ownership of the file from its current owner to user
bob.

bob:users Changes the ownership of the file from its current owner to user
bob and changes the file group owner to group users.

:admins Changes the group owner to the group admins. The file owner is
unchanged.

bob: Changes the file owner from the current owner to user bob and
changes the group owner to the login group of user bob.

Let's say we have two users; janet, who has access to superuser privileges and tony,
who does not. User janet wants to copy a file from her home directory to the home di-
rectory of user tony. Since user janet wants tony to be able to edit the file, janet
changes the ownership of the copied file from janet to tony.

[janet@linuxbox ~]$ sudo cp myfile.txt ~tony
Password:
[janet@linuxbox ~]$ sudo ls -l ~tony/myfile.txt
 -rw-r--r-- 1 root root root 2018-03-20 14:30 /home/tony/myfile.txt
[janet@linuxbox ~]$ sudo chown tony: ~tony/myfile.txt
[janet@linuxbox ~]$ sudo ls -l ~tony/myfile.txt
 -rw-r--r-- 1 tony tony tony 2018-03-20 14:30 /home/tony/myfile.txt

Here we see user janet copy the file from her directory to the home directory of user
tony. Next, janet changes the ownership of the file from root (a result of using
sudo) to tony. Using the trailing colon in the first argument, janet also changed the
group ownership of the file to the login group of tony, which happens to be group
tony.

Notice that after the first use of sudo, janet was not prompted for her password. This
is because sudo, in most configurations, “trusts” us for several minutes until its timer

105

9 – Permissions

runs out.

chgrp – Change Group Ownership

In older versions of Unix, the chown command only changed file ownership, not group
ownership. For that purpose, a separate command, chgrp was used. It works much the
same way as chown, except for being more limited.

Exercising Our Privileges

Now that we have learned how this permissions thing works, it's time to show it off. We
are going to demonstrate the solution to a common problem — setting up a shared direc-
tory. Let's imagine that we have two users named “bill” and “karen.” They both have mu-
sic collections and want to set up a shared directory, where they will each store their mu-
sic files as Ogg Vorbis or MP3. User bill has access to superuser privileges via sudo.

The first thing that needs to happen is a group needs to be created that will have both
bill and karen as members. Using the graphical user management tool, bill creates
a group called music and adds users bill and karen to it:

Next, bill creates the directory for the music files.

106

Figure 3: Creating a new group with GNOME

Exercising Our Privileges

[bill@linuxbox ~]$ sudo mkdir /usr/local/share/Music
Password:

Since bill is manipulating files outside his home directory, superuser privileges are re-
quired. After the directory is created, it has the following ownerships and permissions:

[bill@linuxbox ~]$ ls -ld /usr/local/share/Music
drwxr-xr-x 2 root root 4096 2018-03-21 18:05 /usr/local/share/Music

As we can see, the directory is owned by root and has permission mode 755. To make
this directory sharable, bill needs to change the group ownership and the group permis-
sions to allow writing.

[bill@linuxbox ~]$ sudo chown :music /usr/local/share/Music
[bill@linuxbox ~]$ sudo chmod 775 /usr/local/share/Music
[bill@linuxbox ~]$ ls -ld /usr/local/share/Music
drwxrwxr-x 2 root music 4096 2018-03-21 18:05 /usr/local/share/Music

What does this all mean? It means that we now have a directory, /usr/local/
share/Music that is owned by root and allows read and write access to group mu-
sic. Group music has members bill and karen; thus, bill and karen can create
files in directory /usr/local/share/Music. Other users can list the contents of the
directory but cannot create files there.

But we still have a problem. With the current permissions, files and directories created
within the Music directory will have the normal permissions of the users bill and
karen.

[bill@linuxbox ~]$ > /usr/local/share/Music/test_file
[bill@linuxbox ~]$ ls -l /usr/local/share/Music
-rw-r--r-- 1 bill bill 0 2018-03-24 20:03 test_file

Actually there are two problems. First, the default umask on this system is 0022, which
prevents group members from writing files belonging to other members of the group.
This would not be a problem if the shared directory contained only files, but since this di-
rectory will store music, and music is usually organized in a hierarchy of artists and al-
bums, members of the group will need the ability to create files and directories inside di-
rectories created by other members. We need to change the umask used by bill and

107

9 – Permissions

karen to 0002 instead.

Second, each file and directory created by one member will be set to the primary group of
the user rather than the group music. This can be fixed by setting the setgid bit on the
directory.

[bill@linuxbox ~]$ sudo chmod g+s /usr/local/share/Music
[bill@linuxbox ~]$ ls -ld /usr/local/share/Music
drwxrwsr-x 2 root music 4096 2018-03-24 20:03 /usr/local/share/Music

Now we test to see whether the new permissions fix the problem. bill sets his umask
to 0002, removes the previous test file, and creates a new test file and directory:

[bill@linuxbox ~]$ umask 0002
[bill@linuxbox ~]$ rm /usr/local/share/Music/test_file
[bill@linuxbox ~]$ > /usr/local/share/Music/test_file
[bill@linuxbox ~]$ mkdir /usr/local/share/Music/test_dir
[bill@linuxbox ~]$ ls -l /usr/local/share/Music
drwxrwsr-x 2 bill music 4096 2018-03-24 20:24 test_dir
-rw-rw-r-- 1 bill music 0 2018-03-24 20:22 test_file
[bill@linuxbox ~]$

Both files and directories are now created with the correct permissions to allow all mem-
bers of the group music to create files and directories inside the Music directory.

The one remaining issue is umask. The necessary setting only lasts until the end of ses-
sion and must be reset. In Chapter 11, we'll look at making the change to umask perma-
nent.

Changing Your Password

The last topic we'll cover in this chapter is setting passwords for yourself (and for other
users if you have access to superuser privileges). To set or change a password, the
passwd command is used. The command syntax looks like this:

passwd [user]

To change your password, just enter the passwd command. You will be prompted for
your old password and your new password.

108

Changing Your Password

[me@linuxbox ~]$ passwd
(current) UNIX password:
New UNIX password:

The passwd command will try to enforce use of “strong” passwords. This means it will
refuse to accept passwords that are too short, are too similar to previous passwords, are
dictionary words, or are too easily guessed.

[me@linuxbox ~]$ passwd
(current) UNIX password:
New UNIX password:
BAD PASSWORD: is too similar to the old one
New UNIX password:
BAD PASSWORD: it is WAY too short
New UNIX password:
BAD PASSWORD: it is based on a dictionary word

If you have superuser privileges, you can specify a username as an argument to the
passwd command to set the password for another user. Other options are available to
the superuser to allow account locking, password expiration, and so on. See the passwd
man page for details.

Summing Up

In this chapter we saw how Unix-like systems such as Linux manage user permissions to
allow the read, write, and execution access to files and directories. The basic ideas of this
system of permissions date back to the early days of Unix and have stood up pretty well
to the test of time. But the native permissions mechanism in Unix-like systems lacks the
fine granularity of more modern systems.

Further Reading

● Wikipedia has a good article on malware:
http://en.wikipedia.org/wiki/Malware

There are number of command line programs used to create and maintain users and
groups. For more information, see the man pages for the following commands:

● adduser

● useradd

● groupadd

109

http://en.wikipedia.org/wiki/Malware

