
5 – Working with Commands

5 – Working with Commands

Up to this point, we have seen a series of mysterious commands, each with its own mys-
terious options and arguments. In this chapter, we will attempt to remove some of that
mystery and even create our own commands. The commands introduced in this chapter
are:

● type – Indicate how a command name is interpreted

● which – Display which executable program will be executed

● help – Get help for shell builtins

● man – Display a command's manual page

● apropos – Display a list of appropriate commands

● info – Display a command's info entry

● whatis – Display one-line manual page descriptions

● alias – Create an alias for a command

What Exactly Are Commands?

A command can be one of four different things:

1. An executable program like all those files we saw in /usr/bin. Within this
category, programs can be compiled binaries such as programs written in C and
C++, or programs written in scripting languages such as the shell, Perl, Python,
Ruby, and so on.

2. A command built into the shell itself. bash supports a number of commands in-
ternally called shell builtins. The cd command, for example, is a shell builtin.

3. A shell function. Shell functions are miniature shell scripts incorporated into the
environment. We will cover configuring the environment and writing shell func-
tions in later chapters, but for now, just be aware that they exist.

4. An alias. Aliases are commands that we can define ourselves, built from other
commands.

42

Identifying Commands

Identifying Commands

It is often useful to know exactly which of the four kinds of commands is being used and
Linux provides a couple of ways to find out.

type – Display a Command's Type

The type command is a shell builtin that displays the kind of command the shell will
execute, given a particular command name. It works like this:

type command

where “command” is the name of the command we want to examine. Here are some ex-
amples:

[me@linuxbox ~]$ type type
type is a shell builtin
[me@linuxbox ~]$ type ls
ls is aliased to `ls --color=tty'
[me@linuxbox ~]$ type cp
cp is /bin/cp

Here we see the results for three different commands. Notice the one for ls (taken from a
Fedora system) and how the ls command is actually an alias for the ls command with
the “--color=tty” option added. Now we know why the output from ls is displayed in
color!

which – Display an Executable's Location

Sometimes there is more than one version of an executable program installed on a sys-
tem. While this is not common on desktop systems, it's not unusual on large servers. To
determine the exact location of a given executable, the which command is used.

[me@linuxbox ~]$ which ls
/bin/ls

which only works for executable programs, not builtins nor aliases that are substitutes
for actual executable programs. When we try to use which on a shell builtin for exam-
ple, cd, we either get no response or get an error message:

43

5 – Working with Commands

[me@linuxbox ~]$ which cd
/usr/bin/which: no cd in (/usr/local/bin:/usr/bin:/bin:/usr/local
/games:/usr/games)

This response is a fancy way of saying “command not found.”

Getting a Command's Documentation

With this knowledge of what a command is, we can now search for the documentation
available for each kind of command.

help – Get Help for Shell Builtins

bash has a built-in help facility available for each of the shell builtins. To use it, type
“help” followed by the name of the shell builtin. Here is an example:

[me@linuxbox ~]$ help cd
cd: cd [-L|[-P [-e]] [-@]] [dir]
 Change the shell working directory.

 Change the current directory to DIR. The default DIR is the
 value of the HOME shell variable.

 The variable CDPATH defines the search path for the directory
 containing DIR. Alternative directory names in CDPATH are
 separated by a colon (:). A null directory name is the same as
 the current directory. If DIR begins with a slash (/), then
 CDPATH is not used.

 If the directory is not found, and the shell option `cdable_vars'
 is set, the word is assumed to be a variable name. If that
 variable has a value, its value is used for DIR.

 Options:
 -L force symbolic links to be followed: resolve symbolic
 links in DIR after processing instances of `..'
 -P use the physical directory structure without following
 symbolic links: resolve symbolic links in DIR before
 processing instances of `..'
 -e if the -P option is supplied, and the current working
 directory cannot be determined successfully, exit with
 a non-zero status

44

Getting a Command's Documentation

 -@ on systems that support it, present a file with extended
 attributes as a directory containing the file attributes

 The default is to follow symbolic links, as if `-L' were
 specified. `..' is processed by removing the immediately previous
 pathname component back to a slash or the beginning of DIR.

 Exit Status:
 Returns 0 if the directory is changed, and if $PWD is set
 successfully when -P is used; non-zero otherwise.

A note on notation: When square brackets appear in the description of a command's syn-
tax, they indicate optional items. A vertical bar character indicates mutually exclusive
items. In the case of the cd command above:

cd [-L|[-P[-e]]] [dir]

This notation says that the command cd may be followed optionally by either a “-L” or a
“-P” and further, if the “-P” option is specified the “-e” option may also be included fol-
lowed by the optional argument “dir”.

While the output of help for the cd commands is concise and accurate, it is by no
means tutorial and as we can see, it also seems to mention a lot of things we haven't
talked about yet! Don't worry. We'll get there.

--help – Display Usage Information

Many executable programs support a “--help” option that displays a description of the
command's supported syntax and options. For example:

[me@linuxbox ~]$ mkdir --help
Usage: mkdir [OPTION] DIRECTORY...
Create the DIRECTORY(ies), if they do not already exist.

 -Z, --context=CONTEXT (SELinux) set security context to CONTEXT
Mandatory arguments to long options are mandatory for short options
too.
 -m, --mode=MODE set file mode (as in chmod), not a=rwx – umask
 -p, --parents no error if existing, make parent directories as
 needed
 -v, --verbose print a message for each created directory
 --help display this help and exit

45

5 – Working with Commands

 --version output version information and exit
Report bugs to <bug-coreutils@gnu.org>.

Some programs don't support the “--help” option, but try it anyway. Often it results in an
error message that will reveal the same usage information.

man – Display a Program's Manual Page

Most executable programs intended for command line use provide a formal piece of doc-
umentation called a manual or man page. A special paging program called man is used to
view them. It is used like this:

man program

where “program” is the name of the command to view.

Man pages vary somewhat in format but generally contain the following:

• A title (the page’s name)

• A synopsis of the command's syntax

• A description of the command's purpose

• A listing and description of each of the command's options

Man pages, however, do not usually include examples, and are intended as a reference,
not a tutorial. As an example, let's try viewing the man page for the ls command:

[me@linuxbox ~]$ man ls

On most Linux systems, man uses less to display the manual page, so all of the familiar
less commands work while displaying the page.

The “manual” that man displays is broken into sections and covers not only user com-
mands but also system administration commands, programming interfaces, file formats
and more. Table 5-1 describes the layout of the manual.

Table 5-1: Man Page Organization

Section Contents

1 User commands

46

Getting a Command's Documentation

2 Programming interfaces for kernel system calls

3 Programming interfaces to the C library

4 Special files such as device nodes and drivers

5 File formats

6 Games and amusements such as screen savers

7 Miscellaneous

8 System administration commands

Sometimes we need to refer to a specific section of the manual to find what we are look-
ing for. This is particularly true if we are looking for a file format that is also the name of
a command. Without specifying a section number, we will always get the first instance of
a match, probably in section 1. To specify a section number, we use man like this:

man section search_term

Here's an example:

[me@linuxbox ~]$ man 5 passwd

This will display the man page describing the file format of the /etc/passwd file.

apropos – Display Appropriate Commands

It is also possible to search the list of man pages for possible matches based on a search
term. It's crude but sometimes helpful. Here is an example of a search for man pages us-
ing the search term partition:

[me@linuxbox ~]$ apropos partiton
addpart (8) - simple wrapper around the "add partition"...
all-swaps (7) - event signalling that all swap partitions...
cfdisk (8) - display or manipulate disk partition table
cgdisk (8) - Curses-based GUID partition table (GPT)...
delpart (8) - simple wrapper around the "del partition"...
fdisk (8) - manipulate disk partition table
fixparts (8) - MBR partition table repair utility

47

5 – Working with Commands

gdisk (8) - Interactive GUID partition table (GPT)...
mpartition (1) - partition an MSDOS hard disk
partprobe (8) - inform the OS of partition table changes
partx (8) - tell the Linux kernel about the presence...
resizepart (8) - simple wrapper around the "resize partition...

sfdisk (8) - partition table manipulator for Linux
sgdisk (8) - Command-line GUID partition table (GPT)...

The first field in each line of output is the name of the man page, and the second field
shows the section. Note that the man command with the “-k” option performs the same
function as apropos.

whatis – Display One-line Manual Page Descriptions

The whatis program displays the name and a one-line description of a man page match-
ing a specified keyword:

[me@linuxbox ~]$ whatis ls
ls (1) - list directory contents

The Most Brutal Man Page Of Them All

As we have seen, the manual pages supplied with Linux and other Unix-like sys-
tems are intended as reference documentation and not as tutorials. Many man
pages are hard to read, but I think that the grand prize for difficulty has got to go
to the man page for bash. As I was doing research for this book, I gave the bash
man page careful review to ensure that I was covering most of its topics. When
printed, it's more than 80 pages long and extremely dense, and its structure makes
absolutely no sense to a new user.

On the other hand, it is very accurate and concise, as well as being extremely
complete. So check it out if you dare and look forward to the day when you can
read it and it all makes sense.

info – Display a Program's Info Entry

The GNU Project provides an alternative to man pages for their programs, called “info.”

48

Getting a Command's Documentation

Info manuals are displayed with a reader program named, appropriately enough, info.
Info pages are hyperlinked much like web pages. Here is a sample:

File: coreutils.info, Node: ls invocation, Next: dir invocation,
Up: Directory listing
10.1 `ls': List directory contents
==================================
The `ls' program lists information about files (of any type,
including directories). Options and file arguments can be intermixed
arbitrarily, as usual.
 For non-option command-line arguments that are directories, by
default `ls' lists the contents of directories, not recursively, and
omitting files with names beginning with `.'. For other non-option
arguments, by default `ls' lists just the filename. If no non-option
argument is specified, `ls' operates on the current directory, acting
as if it had been invoked with a single argument of `.'.
 By default, the output is sorted alphabetically, according to the
--zz-Info: (coreutils.info.gz)ls invocation, 63 lines --Top----------

The info program reads info files, which are tree structured into individual nodes, each
containing a single topic. Info files contain hyperlinks that can move the reader from
node to node. A hyperlink can be identified by its leading asterisk and is activated by
placing the cursor upon it and pressing the Enter key.

To invoke info, type info followed optionally by the name of a program. Table 5-2 de-
scribes the commands used to control the reader while displaying an info page.

Table 5-2: info Commands

Command Action

? Display command help

PgUp or Backspace Display previous page

PgDn or Space Display next page

n Next - Display the next node

p Previous - Display the previous node

u Up - Display the parent node of the currently displayed
node, usually a menu

Enter Follow the hyperlink at the cursor location

49

5 – Working with Commands

q Quit

Most of the command line programs we have discussed so far are part of the GNU
Project's coreutils package, so typing the following:

[me@linuxbox ~]$ info coreutils

will display a menu page with hyperlinks to each program contained in the coreutils
package.

README and Other Program Documentation Files

Many software packages installed on our system have documentation files residing in the
/usr/share/doc directory. Most of these are stored in plain text format and can be
viewed with less. Some of the files are in HTML format and can be viewed with a web
browser. We may encounter some files ending with a “.gz” extension. This indicates that
they have been compressed with the gzip compression program. The gzip package in-
cludes a special version of less called zless that will display the contents of gzip-
compressed text files.

Creating Our Own Commands with alias

Now for our first experience with programming! We will create a command of our own
using the alias command. But before we start, we need to reveal a small command line
trick. It's possible to put more than one command on a line by separating each command
with a semicolon. It works like this:

command1; command2; command3...

Here's the example we will use:

[me@linuxbox ~]$ cd /usr; ls; cd -
bin games include lib local sbin share src
/home/me
[me@linuxbox ~]$

As we can see, we have combined three commands on one line. First we change directory
to /usr then list the directory and finally return to the original directory (by using 'cd

50

Creating Our Own Commands with alias

-') so we end up where we started. Now let's turn this sequence into a new command us-
ing alias. The first thing we have to do is dream up a name for our new command.
Let's try “test”. Before we do that, it would be a good idea to find out if the name “test” is
already being used. To find out, we can use the type command again:

[me@linuxbox ~]$ type test
test is a shell builtin

 Oops! The name test is already taken. Let's try foo:

[me@linuxbox ~]$ type foo
bash: type: foo: not found

Great! “foo” is not taken. So let's create our alias:

[me@linuxbox ~]$ alias foo='cd /usr; ls; cd -'

Notice the structure of this command shown here:

alias name='string'

After the command alias, we give alias a name followed immediately (no whitespace
allowed) by an equal sign, followed immediately by a quoted string containing the mean-
ing to be assigned to the name. After we define our alias, we can use it anywhere the shell
would expect a command. Let's try it:

[me@linuxbox ~]$ foo
bin games include lib local sbin share src
/home/me
[me@linuxbox ~]$

We can also use the type command again to see our alias:

[me@linuxbox ~]$ type foo
foo is aliased to `cd /usr; ls; cd -'

51

5 – Working with Commands

To remove an alias, the unalias command is used, like so:

[me@linuxbox ~]$ unalias foo
[me@linuxbox ~]$ type foo
bash: type: foo: not found

While we purposefully avoided naming our alias with an existing command name, it is
not uncommon to do so. This is often done to apply a commonly desired option to each
invocation of a common command. For instance, we saw earlier how the ls command is
often aliased to add color support:

[me@linuxbox ~]$ type ls
ls is aliased to `ls --color=tty'

To see all the aliases defined in the environment, use the alias command without argu-
ments. Here are some of the aliases defined by default on a Fedora system. Try to figure
out what they all do:

[me@linuxbox ~]$ alias
alias l.='ls -d .* --color=tty'
alias ll='ls -l --color=tty'
alias ls='ls --color=tty'

There is one tiny problem with defining aliases on the command line. They vanish when
our shell session ends. In Chapter 11, "The Environment", we will see how to add our
own aliases to the files that establish the environment each time we log on, but for now,
enjoy the fact that we have taken our first, albeit tiny, step into the world of shell pro-
gramming!

Summing Up

Now that we have learned how to find the documentation for commands, go and look up
the documentation for all the commands we have encountered so far. Study what addi-
tional options are available and try them!

Further Reading

There are many online sources of documentation for Linux and the command line. Here
are some of the best:

52

Further Reading

● The Bash Reference Manual is a reference guide to the bash shell. It’s still a ref-
erence work but contains examples and is easier to read than the bash man page.
http://www.gnu.org/software/bash/manual/bashref.html

● The Bash FAQ contains answers to frequently asked questions regarding bash.
This list is aimed at intermediate to advanced users, but contains a lot of good in-
formation.
http://mywiki.wooledge.org/BashFAQ

● The GNU Project provides extensive documentation for its programs, which form
the core of the Linux command line experience. You can see a complete list here:
http://www.gnu.org/manual/manual.html

● Wikipedia has an interesting article on man pages:
http://en.wikipedia.org/wiki/Man_page

53

http://en.wikipedia.org/wiki/Man_page
http://www.gnu.org/manual/manual.html
http://mywiki.wooledge.org/BashFAQ
http://www.gnu.org/software/bash/manual/bashref.html

