
4 – Manipulating Files and Directories

4 – Manipulating Files and Directories

At this point, we are ready for some real work! This chapter will introduce the following
commands:

● cp – Copy files and directories

● mv – Move/rename files and directories

● mkdir – Create directories

● rm – Remove files and directories

● ln – Create hard and symbolic links

These five commands are among the most frequently used Linux commands. They are
used for manipulating both files and directories.

Now, to be frank, some of the tasks performed by these commands are more easily done
with a graphical file manager. With a file manager, we can drag and drop a file from one
directory to another, cut and paste files, delete files, and so on. So why use these old com-
mand line programs?

The answer is power and flexibility. While it is easy to perform simple file manipulations
with a graphical file manager, complicated tasks can be easier with the command line
programs. For example, how could we copy all the HTML files from one directory to an-
other but only copy files that do not exist in the destination directory or are newer than
the versions in the destination directory? It's pretty hard with a file manager but pretty
easy with the command line.

cp -u *.html destination

Wildcards

Before we begin using our commands, we need to talk about a shell feature that makes
these commands so powerful. Since the shell uses filenames so much, it provides special
characters to help us rapidly specify groups of filenames. These special characters are

25

4 – Manipulating Files and Directories

called wildcards. Using wildcards (which is also known as globbing) allows us to select
filenames based on patterns of characters. Table 4-1 lists the wildcards and what they se-
lect.

Table 4-1: Wildcards

Wildcard Meaning

* Matches any characters

? Matches any single character

[characters] Matches any character that is a member of the set characters

[!characters] Matches any character that is not a member of the set
characters

[[:class:]] Matches any character that is a member of the specified
class

Table 4-2 lists the most commonly used character classes.

Table 4-2: Commonly Used Character Classes

Character Class Meaning

[:alnum:] Matches any alphanumeric character

[:alpha:] Matches any alphabetic character

[:digit:] Matches any numeral

[:lower:] Matches any lowercase letter

[:upper:] Matches any uppercase letter

Using wildcards makes it possible to construct sophisticated selection criteria for file-
names. Table 4-3 provides some examples of patterns and what they match.

Table 4-3: Wildcard Examples

Pattern Matches

* All files

g* Any file beginning with “g”

b*.txt Any file beginning with “b” followed by
any characters and ending with “.txt”

26

Wildcards

Data??? Any file beginning with “Data” followed
by exactly three characters

[abc]* Any file beginning with either an “a”, a
“b”, or a “c”

BACKUP.[0-9][0-9][0-9] Any file beginning with “BACKUP.”
followed by exactly three numerals

[[:upper:]]* Any file beginning with an uppercase letter

[![:digit:]]* Any file not beginning with a numeral

*[[:lower:]123] Any file ending with a lowercase letter or
the numerals “1”, “2”, or “3”

Wildcards can be used with any command that accepts filenames as arguments, but we’ll
talk more about that in Chapter 7, "Seeing the World As the Shell Sees It.

Character Ranges

If you are coming from another Unix-like environment or have been reading
some other books on this subject, you may have encountered the [A-Z] and [a-
z] character range notations. These are traditional Unix notations and worked in
older versions of Linux as well. They can still work, but you have to be careful
with them because they will not produce the expected results unless properly con-
figured. For now, you should avoid using them and use character classes instead.

Wildcards Work in the GUI Too

Wildcards are especially valuable not only because they are used so frequently on
the command line, but because they are also supported by some graphical file
managers.

● In Nautilus (the file manager for GNOME), you can select files using the
Edit/Select Pattern menu item. Just enter a file selection pattern with wild-
cards and the files in the currently viewed directory will be highlighted for se-
lection.

27

4 – Manipulating Files and Directories

● In some versions of Dolphin and Konqueror (the file managers for KDE), you
can enter wildcards directly on the location bar. For example, if you want to
see all the files starting with a lowercase “u” in the /usr/bin directory, enter “/
usr/bin/u*” in the location bar and it will display the result.

Many ideas originally found in the command line interface make their way into
the graphical interface, too. It is one of the many things that make the Linux desk-
top so powerful.

mkdir – Create Directories

The mkdir command is used to create directories. It works like this:

mkdir directory...

A note on notation: When three periods follow an argument in the description of a com-
mand (as above), it means that the argument can be repeated, thus the following com-
mand:

mkdir dir1

would create a single directory named dir1, while the following:

mkdir dir1 dir2 dir3

would create three directories named dir1, dir2, and dir3.

cp – Copy Files and Directories

The cp command copies files or directories. It can be used two different ways. The fol-
lowing:

cp item1 item2

copies the single file or directory item1 to the file or directory item2 and the follow-
ing:

28

cp – Copy Files and Directories

cp item... directory

copies multiple items (either files or directories) into a directory.

Useful Options and Examples

Table 4-4 lists some of the commonly used options for cp.

Table 4-4: cp Options

Option Long Option Meaning

-a --archive Copy the files and directories and all of their
attributes, including ownerships and
permissions. Normally, copies take on the
default attributes of the user performing the
copy. We'll take a look at file permissions in
Chapter 9 "Permissions."

-i --interactive Before overwriting an existing file, prompt the
user for confirmation. If this option is not
specified, cp will silently (meaning there will
be no warning) overwrite files.

-r --recursive Recursively copy directories and their contents.
This option (or the -a option) is required when
copying directories.

-u --update When copying files from one directory to
another, only copy files that either don't exist or
are newer than the existing corresponding files,
in the destination directory. This is useful when
copying large numbers of files as it skips files
that don't need to be copied.

-v --verbose Display informative messages as the copy is
performed.

Table 4-5: cp Examples

Command Results

cp file1 file2 Copy file1 to file2. If file2 exists, it is overwritten
with the contents of file1. If file2 does not exist, it

29

4 – Manipulating Files and Directories

is created.

cp -i file1 file2 Same as previous command, except that if file2
exists, the user is prompted before it is overwritten.

cp file1 file2 dir1 Copy file1 and file2 into directory dir1. The
directory dir1 must already exist.

cp dir1/* dir2 Using a wildcard, copy all the files in dir1 into
dir2. The directory dir2 must already exist.

cp -r dir1 dir2 Copy the contents of directory dir1 to directory
dir2. If directory dir2 does not exist, it is created
and, after the copy, will contain the same contents
as directory dir1.
If directory dir2 does exist, then directory dir1 (and
its contents) will be copied into dir2.

mv – Move and Rename Files

The mv command performs both file moving and file renaming, depending on how it is
used. In either case, the original filename no longer exists after the operation. mv is used
in much the same way as cp, as shown here:

mv item1 item2

to move or rename the file or directory item1 to item2 or:

mv item... directory

to move one or more items from one directory to another.

Useful Options and Examples

mv shares many of the same options as cp as described in Table 4-6.

Table 4-6: mv Options

Option Long Option Meaning

-i --interactive Before overwriting an existing file, prompt the

30

mv – Move and Rename Files

user for confirmation. If this option is not
specified, mv will silently overwrite files.

-u --update When moving files from one directory to
another, only move files that either don't exist,
or are newer than the existing corresponding
files in the destination directory.

-v --verbose Display informative messages as the move is
performed.

Table 4-7 provides some examples of mv usage.

Table 4-7: mv Examples

Command Results

mv file1 file2 Move file1 to file2. If file2 exists, it is overwritten
with the contents of file1. If file2 does not exist, it
is created. In either case, file1 ceases to exist.

mv -i file1 file2 Same as the previous command, except that if file2
exists, the user is prompted before it is overwritten.

mv file1 file2 dir1 Move file1 and file2 into directory dir1. The
dierctory dir1 must already exist.

mv dir1 dir2 If directory dir2 does not exist, create directory
dir2 and move the contents of directory dir1 into
dir2 and delete directory dir1.
If directory dir2 does exist, move directory dir1
(and its contents) into directory dir2.

rm – Remove Files and Directories

The rm command is used to remove (delete) files and directories, as shown here:

rm item...

where item is one or more files or directories.

31

4 – Manipulating Files and Directories

Useful Options and Examples

Table 4-8 describes some of the common options for rm.

Table 4-8: rm Options

Option Long Option Meaning

-i --interactive Before deleting an existing file, prompt the user
for confirmation. If this option is not specified,
rm will silently delete files.

-r --recursive Recursively delete directories. This means that if
a directory being deleted has subdirectories,
delete them too. To delete a directory, this option
must be specified.

-f --force Ignore nonexistent files and do not prompt. This
overrides the --interactive option.

-v --verbose Display informative messages as the deletion is
performed.

Table 4-9 provides some examples of using the rm command.

Table 4-9: rm Examples

Command Results

rm file1 Delete file1 silently.

rm -i file1 Same as the previous command, except that the
user is prompted for confirmation before the
deletion is performed.

rm -r file1 dir1 Delete file1 and dir1 and its contents.

rm -rf file1 dir1 Same as the previous command, except that if
either file1 or dir1 do not exist, rm will continue
silently.

32

rm – Remove Files and Directories

Be Careful with rm!

Unix-like operating systems such as Linux do not have an undelete command.
Once you delete something with rm, it's gone. Linux assumes you're smart and
you know what you're doing.

Be particularly careful with wildcards. Consider this classic example. Let's say
you want to delete just the HTML files in a directory. To do this, you type the fol -
lowing:

rm *.html

This is correct, but if you accidentally place a space between the * and the
.html like so:

rm * .html

the rm command will delete all the files in the directory and then complain that
there is no file called .html.

Here is a useful tip: whenever you use wildcards with rm (besides carefully
checking your typing!), test the wildcard first with ls. This will let you see the
files that will be deleted. Then press the up arrow key to recall the command and
replace ls with rm.

ln – Create Links

The ln command is used to create either hard or symbolic links. It is used in one of two
ways. The following creates a hard link:

ln file link

The following creates a symbolic link:

ln -s item link

to create a symbolic link where item is either a file or a directory.

Hard Links

Hard links are the original Unix way of creating links, compared to symbolic links, which

33

4 – Manipulating Files and Directories

are more modern. By default, every file has a single hard link that gives the file its name.
When we create a hard link, we create an additional directory entry for a file. Hard links
have two important limitations:

1. A hard link cannot reference a file outside its own file system. This means a link
cannot reference a file that is not on the same disk partition as the link itself.

2. A hard link may not reference a directory.

A hard link is indistinguishable from the file itself. Unlike a symbolic link, when we list a
directory containing a hard link we will see no special indication of the link. When a hard
link is deleted, the link is removed but the contents of the file itself continue to exist (that
is, its space is not deallocated) until all links to the file are deleted.

It is important to be aware of hard links because you might encounter them from time to
time, but modern practice prefers symbolic links, which we will cover next.

Symbolic Links

Symbolic links were created to overcome the limitations of hard links. Symbolic links
work by creating a special type of file that contains a text pointer to the referenced file or
directory. In this regard, they operate in much the same way as a Windows shortcut,
though of course they predate the Windows feature by many years.

A file pointed to by a symbolic link, and the symbolic link itself are largely indistinguish-
able from one another. For example, if we write something to the symbolic link, the refer-
enced file is written to. However when we delete a symbolic link, only the link is deleted,
not the file itself. If the file is deleted before the symbolic link, the link will continue to
exist but will point to nothing. In this case, the link is said to be broken. In many imple-
mentations, the ls command will display broken links in a distinguishing color, such as
red, to reveal their presence.

The concept of links can seem confusing, but hang in there. We're going to try all this
stuff and it will, hopefully, become clear.

Let's Build a Playground

Since we are going to do some real file manipulation, let's build a safe place to “play”
with our file manipulation commands. First we need a directory to work in. We'll create
one in our home directory and call it playground.

Creating Directories

The mkdir command is used to create a directory. To create our playground directory we
will first make sure we are in our home directory and will then create the new directory.

34

Let's Build a Playground

[me@linuxbox ~]$ cd
[me@linuxbox ~]$ mkdir playground

To make our playground a little more interesting, let's create a couple of directories inside
it called dir1 and dir2. To do this, we will change our current working directory to
playground and execute another mkdir.

[me@linuxbox ~]$ cd playground
[me@linuxbox playground]$ mkdir dir1 dir2

Notice that the mkdir command will accept multiple arguments allowing us to create
both directories with a single command.

Copying Files

Next, let's get some data into our playground. We'll do this by copying a file. Using the
cp command, we'll copy the passwd file from the /etc directory to the current work-
ing directory.

[me@linuxbox playground]$ cp /etc/passwd .

Notice how we used shorthand for the current working directory, the single trailing pe-
riod. So now if we perform an ls, we will see our file.

[me@linuxbox playground]$ ls -l
total 12
drwxrwxr-x 2 me me 4096 2018-01-10 16:40 dir1
drwxrwxr-x 2 me me 4096 2018-01-10 16:40 dir2
-rw-r--r-- 1 me me 1650 2018-01-10 16:07 passwd

Now, just for fun, let's repeat the copy using the “-v” option (verbose) to see what it does.

[me@linuxbox playground]$ cp -v /etc/passwd .
`/etc/passwd' -> `./passwd'

The cp command performed the copy again, but this time displayed a concise message
indicating what operation it was performing. Notice that cp overwrote the first copy

35

4 – Manipulating Files and Directories

without any warning. Again this is a case of cp assuming that we know what we're doing.
To get a warning, we'll include the “-i” (interactive) option.

[me@linuxbox playground]$ cp -i /etc/passwd .
cp: overwrite `./passwd'?

Responding to the prompt by entering a y will cause the file to be overwritten, any other
character (for example, n) will cause cp to leave the file alone.

Moving and Renaming Files

Now, the name passwd doesn't seem very playful and this is a playground, so let's
change it to something else.

[me@linuxbox playground]$ mv passwd fun

Let's pass the fun around a little by moving our renamed file to each of the directories and
back again. The following moves it first to the directory dir1:

[me@linuxbox playground]$ mv fun dir1

The following then moves it from dir1 to dir2:

[me@linuxbox playground]$ mv dir1/fun dir2

Finally, the following brings it back to the current working directory:

[me@linuxbox playground]$ mv dir2/fun .

Next, let's see the effect of mv on directories. First we will move our data file into dir1
again, like this:

[me@linuxbox playground]$ mv fun dir1

Then we move dir1 into dir2 and confirm it with ls.

36

Let's Build a Playground

[me@linuxbox playground]$ mv dir1 dir2
[me@linuxbox playground]$ ls -l dir2
total 4
drwxrwxr-x 2 me me 4096 2018-01-11 06:06 dir1
[me@linuxbox playground]$ ls -l dir2/dir1
total 4
-rw-r--r-- 1 me me 1650 2018-01-10 16:33 fun

Note that since dir2 already existed, mv moved dir1 into dir2. If dir2 had not ex-
isted, mv would have renamed dir1 to dir2. Lastly, let's put everything back.

[me@linuxbox playground]$ mv dir2/dir1 .
[me@linuxbox playground]$ mv dir1/fun .

Creating Hard Links

Now we'll try some links. We’ll first create some hard links to our data file like so:

[me@linuxbox playground]$ ln fun fun-hard
[me@linuxbox playground]$ ln fun dir1/fun-hard
[me@linuxbox playground]$ ln fun dir2/fun-hard

So now we have four instances of the file fun. Let's take a look at our playground direc-
tory.

[me@linuxbox playground]$ ls -l
total 16
drwxrwxr-x 2 me me 4096 2018-01-14 16:17 dir1
drwxrwxr-x 2 me me 4096 2018-01-14 16:17 dir2
-rw-r--r-- 4 me me 1650 2018-01-10 16:33 fun
-rw-r--r-- 4 me me 1650 2018-01-10 16:33 fun-hard

One thing we notice is that both the second fields in the listings for fun and fun-hard
contain a 4 which is the number of hard links that now exist for the file. Remember that a
file will always have at least one link because the file's name is created by a link. So, how
do we know that fun and fun-hard are, in fact, the same file? In this case, ls is not
very helpful. While we can see that fun and fun-hard are both the same size (field 5),
our listing provides no way to be sure. To solve this problem, we're going to have to dig a

37

4 – Manipulating Files and Directories

little deeper.

When thinking about hard links, it is helpful to imagine that files are made up of two
parts.

1. The data part containing the file's contents.

2. The name part that holds the file's name.

When we create hard links, we are actually creating additional name parts that all refer to
the same data part. The system assigns a chain of disk blocks to what is called an inode,
which is then associated with the name part. Each hard link therefore refers to a specific
inode containing the file's contents.

The ls command has a way to reveal this information. It is invoked with the -i option.

[me@linuxbox playground]$ ls -li
total 16
12353539 drwxrwxr-x 2 me me 4096 2018-01-14 16:17 dir1
12353540 drwxrwxr-x 2 me me 4096 2018-01-14 16:17 dir2
12353538 -rw-r--r-- 4 me me 1650 2018-01-10 16:33 fun
12353538 -rw-r--r-- 4 me me 1650 2018-01-10 16:33 fun-hard

In this version of the listing, the first field is the inode number and, as we can see, both
fun and fun-hard share the same inode number, which confirms they are the same
file.

Creating Symbolic Links

Symbolic links were created to overcome the two disadvantages of hard links.

1. Hard links cannot span physical devices.

2. Hard links cannot reference directories, only files.

Symbolic links are a special type of file that contains a text pointer to the target file or di-
rectory.

Creating symbolic links is similar to creating hard links.

[me@linuxbox playground]$ ln -s fun fun-sym
[me@linuxbox playground]$ ln -s ../fun dir1/fun-sym
[me@linuxbox playground]$ ln -s ../fun dir2/fun-sym

The first example is pretty straightforward; we simply add the “-s” option to create a

38

Let's Build a Playground

symbolic link rather than a hard link. But what about the next two? Remember, when we
create a symbolic link, we are creating a text description of where the target file is rela-
tive to the symbolic link. It's easier to see if we look at the ls output shown here:

[me@linuxbox playground]$ ls -l dir1
total 4
-rw-r--r-- 4 me me 1650 2018-01-10 16:33 fun-hard
lrwxrwxrwx 1 me me 6 2018-01-15 15:17 fun-sym -> ../fun

The listing for fun-sym in dir1 shows that it is a symbolic link by the leading l in the
first field and that it points to ../fun, which is correct. Relative to the location of fun-
sym, fun is in the directory above it. Notice too, that the length of the symbolic link file
is 6, the number of characters in the string ../fun rather than the length of the file to
which it is pointing.

When creating symbolic links, we can either use absolute pathnames, as shown here:

[me@linuxbox playground]$ ln -s /home/me/playground/fun dir1/fun-sym

or relative pathnames, as we did in our earlier example. In most cases, using relative
pathnames is more desirable because it allows a directory tree containing symbolic links
and their referenced files to be renamed and/or moved without breaking the links.

In addition to regular files, symbolic links can also reference directories.

[me@linuxbox playground]$ ln -s dir1 dir1-sym
[me@linuxbox playground]$ ls -l
total 16
drwxrwxr-x 2 me me 4096 2018-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2018-01-16 14:45 dir1-sym -> dir1
drwxrwxr-x 2 me me 4096 2018-01-15 15:17 dir2
-rw-r--r-- 4 me me 1650 2018-01-10 16:33 fun
-rw-r--r-- 4 me me 1650 2018-01-10 16:33 fun-hard
lrwxrwxrwx 1 me me 3 2018-01-15 15:15 fun-sym -> fun

Removing Files and Directories

As we covered earlier, the rm command is used to delete files and directories. We are go-
ing to use it to clean up our playground a little bit. First, let's delete one of our hard links.

39

4 – Manipulating Files and Directories

[me@linuxbox playground]$ rm fun-hard
[me@linuxbox playground]$ ls -l
total 12
drwxrwxr-x 2 me me 4096 2018-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2018-01-16 14:45 dir1-sym -> dir1
drwxrwxr-x 2 me me 4096 2018-01-15 15:17 dir2
-rw-r--r-- 3 me me 1650 2018-01-10 16:33 fun
lrwxrwxrwx 1 me me 3 2018-01-15 15:15 fun-sym -> fun

That worked as expected. The file fun-hard is gone and the link count shown for fun
is reduced from four to three, as indicated in the second field of the directory listing.
Next, we'll delete the file fun, and just for enjoyment, we'll include the -i option to
show what that does.

[me@linuxbox playground]$ rm -i fun
rm: remove regular file `fun'?

Enter y at the prompt and the file is deleted. But let's look at the output of ls now. No-
tice what happened to fun-sym? Since it's a symbolic link pointing to a now-nonexis-
tent file, the link is broken.

[me@linuxbox playground]$ ls -l
total 8
drwxrwxr-x 2 me me 4096 2018-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2018-01-16 14:45 dir1-sym -> dir1
drwxrwxr-x 2 me me 4096 2018-01-15 15:17 dir2
lrwxrwxrwx 1 me me 3 2018-01-15 15:15 fun-sym -> fun

Most Linux distributions configure ls to display broken links. The presence of a broken
link is not in and of itself dangerous, but it is rather messy. If we try to use a broken link
we will see this:

[me@linuxbox playground]$ less fun-sym
fun-sym: No such file or directory

Let's clean up a little. We'll delete the symbolic links here:

40

Let's Build a Playground

[me@linuxbox playground]$ rm fun-sym dir1-sym
[me@linuxbox playground]$ ls -l
total 8
drwxrwxr-x 2 me me 4096 2018-01-15 15:17 dir1
drwxrwxr-x 2 me me 4096 2018-01-15 15:17 dir2

One thing to remember about symbolic links is that most file operations are carried out
on the link's target, not the link itself. rm is an exception. When we delete a link, it is the
link that is deleted, not the target.

Finally, we will remove our playground. To do this, we will return to our home directory
and use rm with the recursive option (-r) to delete playground and all of its contents,
including its subdirectories.

[me@linuxbox playground]$ cd
[me@linuxbox ~]$ rm -r playground

Creating Symlinks With The GUI

The file managers in both GNOME and KDE provide an easy and automatic
method of creating symbolic links. With GNOME, holding the Ctrl+Shift keys
while dragging a file will create a link rather than copying (or moving) the file. In
KDE, a small menu appears whenever a file is dropped, offering a choice of copy-
ing, moving, or linking the file.

Summing Up

We've covered a lot of ground here and it will take a while for it all to fully sink in. Per-
form the playground exercise over and over until it makes sense. It is important to get a
good understanding of basic file manipulation commands and wildcards. Feel free to ex-
pand on the playground exercise by adding more files and directories, using wildcards to
specify files for various operations. The concept of links is a little confusing at first, but
take the time to learn how they work. They can be a real lifesaver.

Further Reading

● A discussion of symbolic links: http://en.wikipedia.org/wiki/Symbolic_link

41

http://en.wikipedia.org/wiki/Symbolic_link

