
32 – Positional Parameters

32 – Positional Parameters

One feature that has been missing from our programs so far is the ability to accept and
process command line options and arguments. In this chapter, we will examine the shell
features that allow our programs to get access to the contents of the command line.

Accessing the Command Line

The shell provides a set of variables called positional parameters that contain the individ-
ual words on the command line. The variables are named 0 through 9. They can be
demonstrated this way:

#!/bin/bash

posit-param: script to view command line parameters

echo "
\$0 = $0
\$1 = $1
\$2 = $2
\$3 = $3
\$4 = $4
\$5 = $5
\$6 = $6
\$7 = $7
\$8 = $8
\$9 = $9
"

This is a simple script that displays the values of the variables $0-$9. When executed
with no command line arguments, the result is this:

[me@linuxbox ~]$ posit-param

451

32 – Positional Parameters

$0 = /home/me/bin/posit-param
$1 =
$2 =
$3 =
$4 =
$5 =
$6 =
$7 =
$8 =
$9 =

Even when no arguments are provided, $0 will always contain the first item appearing on
the command line, which is the pathname of the program being executed. When argu-
ments are provided, we see these results:

[me@linuxbox ~]$ posit-param a b c d

$0 = /home/me/bin/posit-param
$1 = a
$2 = b
$3 = c
$4 = d
$5 =
$6 =
$7 =
$8 =
$9 =

Note: You can actually access more than nine parameters using parameter expan-
sion. To specify a number greater than nine, surround the number in braces as in
${10}, ${55}, ${211}, and so on.

Determining the Number of Arguments

The shell also provides a variable, $#, that contains the number of arguments on the com-
mand line:

452

Accessing the Command Line

#!/bin/bash

posit-param: script to view command line parameters

echo "
Number of arguments: $#
\$0 = $0
\$1 = $1
\$2 = $2
\$3 = $3
\$4 = $4
\$5 = $5
\$6 = $6
\$7 = $7
\$8 = $8
\$9 = $9
"

This is the result:

[me@linuxbox ~]$ posit-param a b c d

Number of arguments: 4
$0 = /home/me/bin/posit-param
$1 = a
$2 = b
$3 = c
$4 = d
$5 =
$6 =
$7 =
$8 =
$9 =

shift – Getting Access to Many Arguments

But what happens when we give the program a large number of arguments such as the
following?

[me@linuxbox ~]$ posit-param *

453

32 – Positional Parameters

Number of arguments: 82
$0 = /home/me/bin/posit-param
$1 = addresses.ldif
$2 = bin
$3 = bookmarks.html
$4 = debian-500-i386-netinst.iso
$5 = debian-500-i386-netinst.jigdo
$6 = debian-500-i386-netinst.template
$7 = debian-cd_info.tar.gz
$8 = Desktop
$9 = dirlist-bin.txt

On this example system, the wildcard * expands into 82 arguments. How can we process
that many? The shell provides a method, albeit a clumsy one, to do this. The shift
command causes all the parameters to “move down one” each time it is executed. In fact,
by using shift, it is possible to get by with only one parameter (in addition to $0,
which never changes).

#!/bin/bash

posit-param2: script to display all arguments

count=1

while [[$# -gt 0]]; do
echo "Argument $count = $1"
count=$((count + 1))
shift

done

Each time shift is executed, the value of $2 is moved to $1, the value of $3 is moved
to $2 and so on. The value of $# is also reduced by one.

In the posit-param2 program, we create a loop that evaluates the number of argu-
ments remaining and continues as long as there is at least one. We display the current ar-
gument, increment the variable count with each iteration of the loop to provide a run-
ning count of the number of arguments processed, and, finally, execute a shift to load
$1 with the next argument. Here is the program at work:

454

Accessing the Command Line

[me@linuxbox ~]$ posit-param2 a b c d
Argument 1 = a
Argument 2 = b
Argument 3 = c
Argument 4 = d

Simple Applications

Even without shift, it’s possible to write useful applications using positional parame-
ters. By way of example, here is a simple file information program:

#!/bin/bash

file-info: simple file information program

PROGNAME="$(basename "$0")"

if [[-e "$1"]]; then
echo -e "\nFile Type:"
file "$1"
echo -e "\nFile Status:"
stat "$1"

else
echo "$PROGNAME: usage: $PROGNAME file" >&2
exit 1

fi

This program displays the file type (determined by the file command) and the file sta-
tus (from the stat command) of a specified file. One interesting feature of this program
is the PROGNAME variable. It is given the value that results from the basename "$0"
command. The basename command removes the leading portion of a pathname, leav-
ing only the base name of a file. In our example, basename removes the leading portion
of the pathname contained in the $0 parameter, the full pathname of our example pro-
gram. This value is useful when constructing messages such as the usage message at the
end of the program. By coding it this way, the script can be renamed, and the message au-
tomatically adjusts to contain the name of the program.

Using Positional Parameters with Shell Functions

Just as positional parameters are used to pass arguments to shell scripts, they can also be

455

32 – Positional Parameters

used to pass arguments to shell functions. To demonstrate, we will convert the
file_info script into a shell function.

file_info () {

file_info: function to display file information

if [[-e "$1"]]; then
echo -e "\nFile Type:"
file "$1"
echo -e "\nFile Status:"
stat "$1"

else
echo "$FUNCNAME: usage: $FUNCNAME file" >&2
return 1

fi
}

Now, if a script that incorporates the file_info shell function calls the function with a
filename argument, the argument will be passed to the function.

With this capability, we can write many useful shell functions that not only can be used in
scripts, but also can be used within our .bashrc files.

Notice that the PROGNAME variable was changed to the shell variable FUNCNAME. The
shell automatically updates this variable to keep track of the currently executed shell
function. Note that $0 always contains the full pathname of the first item on the com-
mand line (i.e., the name of the program) and does not contain the name of the shell func-
tion as we might expect.

Handling Positional Parameters en Masse

It is sometimes useful to manage all the positional parameters as a group. For example,
we might want to write a “wrapper” around another program. This means we create a
script or shell function that simplifies the invocation of another program. The wrapper, in
this case, supplies a list of arcane command line options and then passes a list of argu-
ments to the lower-level program.

The shell provides two special parameters for this purpose. They both expand into the
complete list of positional parameters but differ in rather subtle ways. They are described
in Table 32-1.

456

Handling Positional Parameters en Masse

Table 32-1: The * and @ Special Parameters

Parameter Description

$* Expands into the list of positional parameters, starting with 1.
When surrounded by double quotes, it expands into a double-
quoted string containing all of the positional parameters, each
separated by the first character of the IFS shell variable (by default
a space character).

$@ Expands into the list of positional parameters, starting with 1.
When surrounded by double quotes, it expands each positional
parameter into a separate word as if it was surrounded by double
quotes.

Here is a script that shows these special parameters in action:

#!/bin/bash

posit-params3: script to demonstrate $* and $@

print_params () {
echo "\$1 = $1"
echo "\$2 = $2"
echo "\$3 = $3"
echo "\$4 = $4"

}

pass_params () {
echo -e "\n" '$* :'; print_params $*
echo -e "\n" '"$*" :'; print_params "$*"
echo -e "\n" '$@ :'; print_params $@
echo -e "\n" '"$@" :'; print_params "$@"

}

pass_params "word" "words with spaces"

In this rather convoluted program, we create two arguments: word and words with
spaces, and pass them to the pass_params function. That function, in turn, passes
them on to the print_params function, using each of the four methods available with
the special parameters $* and $@. When executed, the script reveals the differences.

457

32 – Positional Parameters

[me@linuxbox ~]$ posit-param3

 $* :
$1 = word
$2 = words
$3 = with
$4 = spaces

 "$*" :
$1 = word words with spaces
$2 =
$3 =
$4 =

 $@ :
$1 = word
$2 = words
$3 = with
$4 = spaces

 "$@" :
$1 = word
$2 = words with spaces
$3 =
$4 =

With our arguments, both $* and $@ produce a four-word result.

word words with spaces

"$*" produces a one-word result:

"word words with spaces"

"$@" produces a two-word result:

"word" "words with spaces"

This matches our actual intent. The lesson to take from this is that even though the shell
provides four different ways of getting the list of positional parameters, "$@" is by far
the most useful for most situations because it preserves the integrity of each positional
parameter. To ensure safety, it should always be used, unless we have a compelling rea-
son not to use it.

458

A More Complete Application

A More Complete Application

After a long hiatus, we are going to resume work on our sys_info_page program,
last seen in Chapter 27. Our next addition will add several command line options to the
program as follows:

● Output file. We will add an option to specify a name for a file to contain the pro-
gram’s output. It will be specified as either -f file or --file file.

● Interactive mode. This option will prompt the user for an output filename and
will determine whether the specified file already exists. If it does, the user will be
prompted before the existing file is overwritten. This option will be specified by
either -i or --interactive.

● Help. Either -h or --help may be specified to cause the program to output an
informative usage message.

Here is the code needed to implement the command line processing:

usage () {
echo "$PROGNAME: usage: $PROGNAME [-f file | -i]"
return

}

process command line options

interactive=
filename=

while [[-n "$1"]]; do
case "$1" in

-f | --file) shift
filename="$1"
;;

-i | --interactive) interactive=1
;;

-h | --help) usage
exit
;;

*) usage >&2
exit 1
;;

esac
shift

done

459

32 – Positional Parameters

First, we add a shell function called usage to display a message when the help option is
invoked or an unknown option is attempted.

Next, we begin the processing loop. This loop continues while the positional parameter
$1 is not empty. At the end of the loop, we have a shift command to advance the posi-
tional parameters to ensure that the loop will eventually terminate.

Within the loop, we have a case statement that examines the current positional parame-
ter to see whether it matches any of the supported choices. If a supported parameter is
found, it is acted upon. If an unknown choice is found the usage message is displayed and
the script terminates with an error.

The -f parameter is handled in an interesting way. When detected, it causes an additional
shift to occur, which advances the positional parameter $1 to the filename argument
supplied to the -f option.

We next add the code to implement the interactive mode.

interactive mode

if [[-n "$interactive"]]; then
while true; do

read -p "Enter name of output file: " filename
if [[-e "$filename"]]; then

read -p "'$filename' exists. Overwrite? [y/n/q] > "
case "$REPLY" in

Y|y) break
;;

Q|q) echo "Program terminated."
exit
;;

*) continue
;;

esac
elif [[-z "$filename"]]; then

continue
else

break
fi

done
fi

If the interactive variable is not empty, an endless loop is started, which contains
the filename prompt and subsequent existing file-handling code. If the desired output file

460

A More Complete Application

already exists, the user is prompted to overwrite, choose another filename, or quit the
program. If the user chooses to overwrite an existing file, a break is executed to termi-
nate the loop. Notice how the case statement detects only whether the user chooses to
overwrite or quit. Any other choice causes the loop to continue and prompts the user
again.

To implement the output filename feature, we must first convert the existing page-writing
code into a shell function, for reasons that will become clear in a moment.

write_html_page () {
cat <<- _EOF_
<html>

<head>
<title>$TITLE</title>

</head>
<body>

<h1>$TITLE</h1>
<p>$TIMESTAMP</p>
$(report_uptime)
$(report_disk_space)
$(report_home_space)

</body>
</html>
EOF
return

}

output html page

if [[-n "$filename"]]; then
if touch "$filename" && [[-f "$filename"]]; then

write_html_page > "$filename"
else

echo "$PROGNAME: Cannot write file '$filename'" >&2
exit 1

fi
else

write_html_page
fi

The code that handles the logic of the -f option appears at the end of the previous listing.
In it, we test for the existence of a filename and, if one is found, a test is performed to see
whether the file is indeed writable. To do this, a touch is performed, followed by a test

461

32 – Positional Parameters

to determine whether the resulting file is a regular file. These two tests take care of situa-
tions where an invalid pathname is input (touch will fail), and, if the file already exists,
that it’s a regular file.

As we can see, the write_html_page function is called to perform the actual gener-
ation of the page. Its output is either directed to standard output (if the variable file-
name is empty) or redirected to the specified file. Since we have two possible destina-
tions for the HTML code, it makes sense to convert the write_html_page routine to
a shell function to avoid redundant code.

Summing Up

With the addition of positional parameters, we can now write fairly functional scripts.
For simple, repetitive tasks, positional parameters make it possible to write very useful
shell functions that can be placed in a user’s .bashrc file.

Our sys_info_page program has grown in complexity and sophistication. Here is a
complete listing, with the most recent changes highlighted:

#!/bin/bash

sys_info_page: program to output a system information page

PROGNAME="$(basename "$0")"
TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME="$(date +"%x %r %Z")"
TIMESTAMP="Generated $CURRENT_TIME, by $USER"

report_uptime () {
cat <<- _EOF_

<h2>System Uptime</h2>
<pre>$(uptime)</pre>
EOF

return
}

report_disk_space () {
cat <<- _EOF_

<h2>Disk Space Utilization</h2>
<pre>$(df -h)</pre>
EOF

return
}

462

Summing Up

report_home_space () {
if [["$(id -u)" -eq 0]]; then

cat <<- _EOF_
<h2>Home Space Utilization (All Users)</h2>
<pre>$(du -sh /home/*)</pre>
EOF

else
cat <<- _EOF_

<h2>Home Space Utilization ($USER)</h2>
<pre>$(du -sh "$HOME")</pre>
EOF

fi
return

}

usage () {
echo "$PROGNAME: usage: $PROGNAME [-f file | -i]"
return

}

write_html_page () {
cat <<- _EOF_
<html>

<head>
<title>$TITLE</title>

</head>
<body>

<h1>$TITLE</h1>
<p>$TIMESTAMP</p>
$(report_uptime)
$(report_disk_space)
$(report_home_space)

</body>
</html>
EOF
return

}

process command line options

interactive=
filename=

463

32 – Positional Parameters

while [[-n "$1"]]; do
case "$1" in

-f | --file) shift
filename="$1"
;;

-i | --interactive) interactive=1
;;

-h | --help) usage
exit
;;

*) usage >&2
exit 1
;;

esac
shift

done

interactive mode

if [[-n "$interactive"]]; then
while true; do

read -p "Enter name of output file: " filename
if [[-e "$filename"]]; then

read -p "'$filename' exists. Overwrite? [y/n/q] > "
case "$REPLY" in

Y|y) break
;;

Q|q) echo "Program terminated."
exit
;;

*) continue
;;

esac
elif [[-z "$filename"]]; then

continue
else

break
fi

done
fi

output html page

if [[-n "$filename"]]; then

464

Summing Up

if touch "$filename" && [[-f "$filename"]]; then
write_html_page > "$filename"

else
echo "$PROGNAME: Cannot write file '$filename'" >&2
exit 1

fi
else

write_html_page
fi

We’re not done yet. There are still a few more things we can do and improvements we
can make.

Further Reading

● The Bash Hackers Wiki has a good article on positional parameters:
http://wiki.bash-hackers.org/scripting/posparams

● The Bash Reference Manual has an article on the special parameters, including
$* and $@:
http://www.gnu.org/software/bash/manual/bashref.html#Special-Parameters

● In addition to the techniques discussed in this chapter, bash includes a builtin
command called getopts, which can also be used for process command line ar-
guments. It is described in the SHELL BUILTIN COMMANDS section of the
bash man page and at the Bash Hackers Wiki:
http://wiki.bash-hackers.org/howto/getopts_tutorial

465

http://wiki.bash-hackers.org/howto/getopts_tutorial
http://www.gnu.org/software/bash/manual/bashref.html#Special-Parameters
http://wiki.bash-hackers.org/scripting/posparams

