30 — Troubleshooting

30 - Troubleshooting

Now that our scripts become more complex, it’s time to look at what happens when
things go wrong. In this chapter, we’ll look at some of the common kinds of errors that
occur in scripts and examine a few useful techniques that can be used to track down and
eradicate problems.

Syntactic Errors

One general class of errors is syntactic. Syntactic errors involve mistyping some element
of shell syntax. The shell will stop executing a script when it encounters this type of error.

In the following discussions, we will use this script to demonstrate common types of er-
rors:

#!/bin/bash
trouble: script to demonstrate common errors
number=1

if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi

As written, this script runs successfully.

[me@linuxbox ~]$ trouble
Number is equal to 1.

430

Syntactic Errors

Missing Quotes

Let’s edit our script and remove the trailing quote from the argument following the first
echo command.

#!/bin/bash
trouble: script to demonstrate common errors
number=1

if [$number = 1]; then

echo "Number is equal to 1.
else

echo "Number is not equal to 1."
fi

Here is what happens:

[me@linuxbox ~]$ trouble

/home/me/bin/trouble: line 10: unexpected EOF while looking for
matching "'

/home/me/bin/trouble: line 13: syntax error: unexpected end of file

It generates two errors. Interestingly, the line numbers reported by the error messages are
not where the missing quote was removed but rather much later in the program. If we fol-
low the program after the missing quote, we can see why. bash will continue looking for
the closing quote until it finds one, which it does, immediately after the second echo
command. After that, bash becomes very confused. The syntax of the subsequent if
command is broken because the f1 statement is now inside a quoted (but open) string.

In long scripts, this kind of error can be quite hard to find. Using an editor with syntax
highlighting will help since, in most cases, it will display quoted strings in a distinctive
manner from other kinds of shell syntax. If a complete version of vim is installed, syntax
highlighting can be enabled by entering this command:

:syntax on

431

30 — Troubleshooting

Missing or Unexpected Tokens

Another common mistake is forgetting to complete a compound command, such as if or
while. Let’s look at what happens if we remove the semicolon after test in the if
command:

#!/bin/bash
trouble: script to demonstrate common errors
number=1

if [$number = 1] then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi

The result is this:

[me@linuxbox ~]$ trouble

/home/me/bin/trouble: line 9: syntax error near unexpected token
“else!

/home/me/bin/trouble: line 9: “else'

Again, the error message points to an error that occurs later than the actual problem.
What happens is really pretty interesting. As we recall, 1f accepts a list of commands
and evaluates the exit code of the last command in the list. In our program, we intend this
list to consist of a single command, [, a synonym for test. The [command takes what
follows it as a list of arguments; in our case, that’s four arguments: $number, 1, =, and
1. With the semicolon removed, the word then is added to the list of arguments, which
is syntactically legal. The following echo command is legal, too. It’s interpreted as an-
other command in the list of commands that if will evaluate for an exit code. The else
is encountered next, but it’s out of place since the shell recognizes it as a reserved word (a
word that has special meaning to the shell) and not the name of a command, which is the
reason for the error message.

Unanticipated Expansions

It’s possible to have errors that occur only intermittently in a script. Sometimes the script
will run fine and other times it will fail because of the results of an expansion. If we re-

432

Syntactic Errors

turn our missing semicolon and change the value of number to an empty variable, we
can demonstrate.

#!/bin/bash
trouble: script to demonstrate common errors
number=

if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi

Running the script with this change results in the following output:

[me@linuxbox ~]$ trouble
/home/me/bin/trouble: line 7: [: =: unary operator expected
Number is not equal to 1.

We get this rather cryptic error message, followed by the output of the second echo
command. The problem is the expansion of the number variable within the test com-
mand. When the following command:

[$number = 1]

undergoes expansion with number being empty, the result is this:

[=11

which is invalid and the error is generated. The = operator is a binary operator (it requires
a value on each side), but the first value is missing, so the test command expects a
unary operator (such as - z) instead. Further, since the test failed (because of the error),
the 1f command receives a non-zero exit code and acts accordingly, and the second
echo command is executed.

This problem can be corrected by adding quotes around the first argument in the test

433

30 — Troubleshooting

command.

["$number" = 1]

Then when expansion occurs, the result will be this:

[mnn - 1]

This yields the correct number of arguments. In addition to empty strings, quotes should
be used in cases where a value could expand into multiword strings, as with filenames
containing embedded spaces.

Note: Make it a rule to always enclose variables and command substitutions in
double quotes unless word splitting is needed.

Logical Errors

Unlike syntactic errors, logical errors do not prevent a script from running. The script
will run, but it will not produce the desired result, because of a problem with its logic.
There are countless numbers of possible logical errors, but here are a few of the most
common kinds found in scripts:

1. Incorrect conditional expressions. It’s easy to incorrectly code an if/then/else

and have the wrong logic carried out. Sometimes the logic will be reversed, or it
will be incomplete.

“Off by one” errors. When coding loops that employ counters, it is possible to
overlook that the loop may require that the counting start with zero, rather than
one, for the count to conclude at the correct point. These kinds of errors result in
either a loop “going off the end” by counting too far or a loop missing the last it-
eration by terminating one iteration too soon.

Unanticipated situations. Most logic errors result from a program encountering
data or situations that were unforeseen by the programmer. As we have seen, this
can also include unanticipated expansions, such as a filename that contains em-
bedded spaces that expands into multiple command arguments rather than a single
filename.

434

Logical Errors

Defensive Programming

It is important to verify assumptions when programming. This means a careful evaluation
of the exit status of programs and commands that are used by a script. Here is an exam-
ple, based on a true story. An unfortunate system administrator wrote a script to perform a
maintenance task on an important server. The script contained the following two lines of
code:

cd $dir_name
rm *

There is nothing intrinsically wrong with these two lines, as long as the directory named
in the variable, dir_name, exists. But what happens if it does not? In that case, the cd
command fails, and the script continues to the next line and deletes the files in the current
working directory. Not the desired outcome at all! The hapless administrator destroyed an
important part of the server because of this design decision.

Let’s look at some ways this design could be improved. First, it might be wise to ensure
that the dir_name variable expands into only one word by quoting it and make the exe-
cution of rm contingent on the success of cd.

cd "$dir_name" && rm *

This way, if the cd command fails, the rm command is not carried out. This is better but
still leaves open the possibility that the variable, dir_name, is unset or empty, which
would result in the files in the user’s home directory being deleted. This could also be
avoided by checking to see that dir_name actually contains the name of an existing di-
rectory.

[[-d "$dir_name"]] && cd "$dir_name" && rm *

Often, it is best to include logic to terminate the script and report an error when an situa-
tion such as the one shown previously occurs.

Delete files in directory $dir_name

if [[! -d "$dir_name"]]; then
echo "No such directory: '$dir_name'" >&2
exit 1

fi

435

30 — Troubleshooting

if ! cd "$dir_name"; then
echo "Cannot cd to '$dir_name'" >&2
exit 1
fi
if ! rm *; then
echo "File deletion failed. Check results" >&2
exit 1
fi

Here, we check both the name, to see that it is an existing directory, and the success of
the cd command. If either fails, a descriptive error message is sent to standard error, and
the script terminates with an exit status of one to indicate a failure.

Watch Out for Filenames

There is another problem with this file deletion script that is more obscure but could be
very dangerous. Unix (and Unix-like operating systems) has, in the opinion of many, a
serious design flaw when it comes to filenames. Unix is extremely permissive about
them. In fact, there are only two characters that cannot be included in a filename. The
first is the / character since it is used to separate elements of a pathname, and the second
is the null character (a zero byte), which is used internally to mark the ends of strings.
Everything else is legal including spaces, tabs, line feeds, leading hyphens, carriage re-
turns, and so on.

Of particular concern are leading hyphens. For example, it's perfectly legal to have a file
named "-rf ~". Consider for a moment what happens when that filename is passed to rm.

To defend against this problem, we want to change our rm command in the file deletion
script from this:

rm *

to the following:

rm ./*

This will prevent a filename starting with a hyphen from being interpreted as a command
option. As a general rule, always precede wildcards (such as * and ?) with ./ to prevent
misinterpretation by commands. This includes things like * . pdf and ???.mp3, for ex-
ample.

436

Logical Errors

Portable Filenames

To ensure that a filename is portable between multiple platforms (i.e., different
types of computers and operating systems), care must be taken to limit which
characters are included in a filename. There is a standard called the POSIX Porta-
ble Filename Character Set that can be used to maximize the chances that a file-
name will work across different systems. The standard is pretty simple. The only
characters allowed are the uppercase letters A-Z, the lowercase letters a-z, the nu-
merals 0-9, period (.), hyphen (-), and underscore (_). The standard further sug-
gests that filenames not begin with a hyphen.

Verifying Input

A general rule of good programming is that if a program accepts input, it must be able to
deal with anything it receives. This usually means that input must be carefully screened to
ensure that only valid input is accepted for further processing. We saw an example of this
in the previous chapter when we studied the read command. One script contained the
following test to verify a menu selection:

[[$REPLY =~ A[0-3]%]]

This test is very specific. It will return a zero exit status only if the string entered by the
user is a numeral in the range of zero to three. Nothing else will be accepted. Sometimes
these kinds of tests can be challenging to write, but the effort is necessary to produce a
high-quality script.

Design is a Function of Time

When I was a college student studying industrial design, a wise professor stated
that the amount of design on a project was determined by the amount of time
given to the designer. If you were given five minutes to design a device “that kills
flies,” you designed a flyswatter. If you were given five months, you might come
up with a laser-guided “anti-fly system” instead.

The same principle applies to programming. Sometimes a “quick-and-dirty”
script will do if it’s going to be used once and only by the programmer. That kind
of script is common and should be developed quickly to make the effort economi-

437

30 — Troubleshooting

cal. Such scripts don’t need a lot of comments and defensive checks. On the other
hand, if a script is intended for production use, that is, a script that will be used
over and over for an important task or by multiple users, it needs much more
careful development.

Testing

Testing is an important step in every kind of software development, including scripts.
There is a saying in the open-source world, “release early, release often,” that reflects this
fact. By releasing early and often, software gets more exposure to use and testing. Experi-
ence has shown that bugs are much easier to find, and much less expensive to fix, if they
are found early in the development cycle.

In Chapter 26, “Top-Down Design,” we saw how stubs can be used to verify program
flow. From the earliest stages of script development, they are a valuable technique to
check the progress of our work.

Let’s look at the file-deletion problem shown previously and see how this could be coded
for easy testing. Testing the original fragment of code would be dangerous since its pur-
pose is to delete files, but we could modify the code to make the test safe.

if [[-d $dir_name]]; then
if cd $dir_name; then
echo rm * # TESTING

else
echo "cannot cd to '$dir_name'" >&2
exit 1
fi
else
echo "no such directory: '$dir_name'" >&2
exit 1

fi
exit # TESTING

Since the error conditions already output useful messages, we don't have to add any. The
most important change is placing an echo command just before the rm command to al-
low the command and its expanded argument list to be displayed, rather than the com-
mand actually being executed. This change allows safe execution of the code. At the end
of the code fragment, we place an exit command to conclude the test and prevent any
other part of the script from being carried out. The need for this will vary according to the

438

Testing

design of the script.

We also include some comments that act as “markers” for our test-related changes. These
can be used to help find and remove the changes when testing is complete.

Test Cases

To perform useful testing, it's important to develop and apply good test cases. This is
done by carefully choosing input data or operating conditions that reflect edge and cor-
ner cases. In our code fragment (which is simple), we want to know how the code per-
forms under three specific conditions:

1. dir_name contains the name of an existing directory.
2. dir_name contains the name of a nonexistent directory.
3. dir_name is empty.
By performing the test with each of these conditions, good test coverage is achieved.

Just as with design, testing is a function of time, as well. Not every script feature needs to
be extensively tested. It's really a matter of determining what is most important. Since it
could be so potentially destructive if it malfunctioned, our code fragment deserves careful
consideration during both its design and testing.

Debugging

If testing reveals a problem with a script, the next step is debugging. “A problem” usually
means that the script is, in some way, not performing to the programmer's expectations. If
this is the case, we need to carefully determine exactly what the script is actually doing
and why. Finding bugs can sometimes involve a lot of detective work.

A well-designed script will try to help. It should be programmed defensively, to detect ab-
normal conditions and provide useful feedback to the user. Sometimes, however, prob-
lems are quite strange and unexpected, and more involved techniques are required.

Finding the Problem Area

In some scripts, particularly long ones, it is sometimes useful to isolate the area of the
script that is related to the problem. This won’t always be the actual error, but isolation
will often provide insights into the actual cause. One technique that can be used to isolate
code is “commenting out” sections of a script. For example, our file deletion fragment
could be modified to determine whether the removed section was related to an error.

if [[-d $dir_name]]; then

439

30 — Troubleshooting

if cd $dir_name; then
rm *
else
echo "cannot cd to '$dir_name'" >&2
exit 1
fi
else
echo "no such directory: '$dir name'" >&2
exit 1
fi

By placing comment symbols at the beginning of each line in a logical section of a script,
we prevent that section from being executed. Testing can then be performed again, to see
whether the removal of the code has any impact on the behavior of the bug.

Tracing

Bugs are often cases of unexpected logical flow within a script. That is, portions of the
script either are never being executed or are being executed in the wrong order or at the
wrong time. To view the actual flow of the program, we use a technique called tracing.

One tracing method involves placing informative messages in a script that display the lo-
cation of execution. We can add messages to our code fragment.

echo "preparing to delete files" >&2
if [[-d $dir_name]]; then

if cd $dir_name; then
echo "deleting files" >&2

rm *

else
echo "cannot cd to '$dir_name'" >&2
exit 1

fi

else
echo "no such directory: '$dir_name'" >&2
exit 1

fi
echo "file deletion complete" >&2

We send the messages to standard error to separate them from normal output. We also do
not indent the lines containing the messages, so it is easier to find when it’s time to re-
move them.

440

Debugging

Now when the script is executed, it’s possible to see that the file deletion has been per-
formed.

[me@linuxbox ~]$ deletion-script
preparing to delete files
deleting files

file deletion complete
[me@linuxbox ~]$

bash also provides a method of tracing, implemented by the -X option and the set
command with the -X option. Using our earlier trouble script, we can activate tracing
for the entire script by adding the - X option to the first line.

#!/bin/bash -x

trouble: script to demonstrate common errors

number=1

if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi

When executed, the results look like this:

[me@linuxbox ~]$ trouble

+ number=1

+l[l1:1|]l

+ echo 'Number is equal to 1.'
Number is equal to 1.

With tracing enabled, we see the commands performed with expansions applied. The
leading plus signs indicate the display of the trace to distinguish them from lines of regu-
lar output. The plus sign is the default character for trace output. It is contained in the
PS4 (prompt string 4) shell variable. The contents of this variable can be adjusted to
make the prompt more useful. Here, we modify the contents of the variable to include the
current line number in the script where the trace is performed. Note that single quotes are
required to prevent expansion until the prompt is actually used.

441

30 — Troubleshooting

[me@linuxbox ~]$ export PS4='S$LINENO + '
[me@linuxbox ~]$ trouble

5 + number=1

7+ '["1=1"]

8 + echo 'Number is equal to 1.'

Number is equal to 1.

To perform a trace on a selected portion of a script, rather than the entire script, we can
use the set command with the - X option.

#!/bin/bash
trouble: script to demonstrate common errors
number=1

set -x # Turn on tracing
if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi
set +x # Turn off tracing

We use the set command with the - X option to activate tracing and the +X option to de-
activate tracing. This technique can be used to examine multiple portions of a trouble-
some script.

Examining Values During Execution

It is often useful, along with tracing, to display the content of variables to see the internal
workings of a script while it is being executed. Applying additional echo statements will
usually do the trick.

#!/bin/bash
trouble: script to demonstrate common errors

number=1

442

Debugging

echo "number=$number" # DEBUG
set -x # Turn on tracing
if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi
set +x # Turn off tracing

In this trivial example, we simply display the value of the variable number and mark the
added line with a comment to facilitate its later identification and removal. This tech-
nique is particularly useful when watching the behavior of loops and arithmetic within
scripts.

Summing Up

In this chapter, we looked at just a few of the problems that can crop up during script de-
velopment. Of course, there are many more. The techniques described here will enable
finding most common bugs. Debugging is a fine art that is developed through experience,
both in knowing how to avoid bugs (testing constantly throughout development) and in
finding bugs (effective use of tracing).

Further Reading

e The Wikipedia has a couple of short articles on syntactic and logical errors:
http://en.wikipedia.org/wiki/Syntax error

http://en.wikipedia.org/wiki/L.ogic_error
e There are many online resources for the technical aspects of bash programming:
http://mywiki.wooledge.org/BashPitfalls

http://tldp.org/L.DP/abs/html/gotchas.html
http://www.gnu.org/software/bash/manual/html node/Reserved-Word-Index.html

e David Wheeler has a excellent discussion of the Unix filename problem and how
to code shell scripts to deal with it:

https://www.dwheeler.com/essays/filenames-in-shell.html

e For really heavy-duty debugging, there is the Bash Debugger:
http://bashdb.sourceforge.net/

443

http://bashdb.sourceforge.net/
https://www.dwheeler.com/essays/filenames-in-shell.html
http://www.gnu.org/software/bash/manual/html_node/Reserved-Word-Index.html
http://tldp.org/LDP/abs/html/gotchas.html
http://mywiki.wooledge.org/BashPitfalls
http://en.wikipedia.org/wiki/Logic_error
http://en.wikipedia.org/wiki/Syntax_error

