
18 – Archiving and Backup

18 – Archiving and Backup

One of the primary tasks of a computer system’s administrator is keeping the system’s
data secure. One way this is done is by performing timely backups of the system’s files.
Even if you’re not a system administrator, it is often useful to make copies of things and
move large collections of files from place to place and from device to device.

In this chapter, we will look at several common programs that are used to manage collec-
tions of files. These are the file compression programs:

● gzip – Compress or expand files

● bzip2 – A block sorting file compressor

These are the archiving programs:

● tar – Tape archiving utility

● zip – Package and compress files

This is the file synchronization program:

● rsync – Remote file and directory synchronization

Compressing Files

Throughout the history of computing, there has been a struggle to get the most data into
the smallest available space, whether that space be memory, storage devices, or network
bandwidth. Many of the data services that we take for granted today, such as mobile
phone service, high-definition television, or broadband Internet, owe their existence to ef-
fective data compression techniques.

Data compression is the process of removing redundancy from data. Let’s consider an
imaginary example. Say we had an entirely black picture file with the dimensions of 100
pixels by 100 pixels. In terms of data storage (assuming 24 bits, or 3 bytes per pixel), the
image will occupy 30,000 bytes of storage.

100 * 100 * 3 = 30,000

An image that is all one color contains entirely redundant data. If we were clever, we
could encode the data in such a way that we simply describe the fact that we have a block

234

Compressing Files

of 10,000 black pixels. So, instead of storing a block of data containing 30,000 zeros
(black is usually represented in image files as zero), we could compress the data into the
number 10,000, followed by a zero to represent our data. Such a data compression
scheme is called run-length encoding and is one of the most rudimentary compression
techniques. Today’s techniques are much more advanced and complex, but the basic goal
remains the same — get rid of redundant data.

Compression algorithms (the mathematical techniques used to carry out the compression)
fall into two general categories.

• Lossless: Lossless compression preserves all the data contained in the original.
This means that when a file is restored from a compressed version, the restored
file is exactly the same as the original, uncompressed version.

• Lossy: Lossy compression, on the other hand, removes data as the compression is
performed to allow more compression to be applied. When a lossy file is restored,
it does not match the original version; rather, it is a close approximation. Exam-
ples of lossy compression are JPEG (for images) and MP3 (for music).

In our discussion, we will look exclusively at lossless compression since most data on
computers cannot tolerate any data loss.

gzip

The gzip program is used to compress one or more files. When executed, it replaces the
original file with a compressed version of the original. The corresponding gunzip pro-
gram is used to restore compressed files to their original, uncompressed form. Here is an
example:

[me@linuxbox ~]$ ls -l /etc > foo.txt
[me@linuxbox ~]$ ls -l foo.*
-rw-r--r-- 1 me me 15738 2018-10-14 07:15 foo.txt
[me@linuxbox ~]$ gzip foo.txt
[me@linuxbox ~]$ ls -l foo.*
-rw-r--r-- 1 me me 3230 2018-10-14 07:15 foo.txt.gz
[me@linuxbox ~]$ gunzip foo.txt
[me@linuxbox ~]$ ls -l foo.*
-rw-r--r-- 1 me me 15738 2018-10-14 07:15 foo.txt

In this example, we create a text file named foo.txt from a directory listing. Next, we
run gzip, which replaces the original file with a compressed version named foo.tx-
t.gz. In the directory listing of foo.*, we see that the original file has been replaced
with the compressed version and that the compressed version is about one-fifth the size of
the original. We can also see that the compressed file has the same permissions and time-

235

18 – Archiving and Backup

stamp as the original.

Next, we run the gunzip program to uncompress the file. Afterward, we can see that the
compressed version of the file has been replaced with the original, again with the permis-
sions and timestamp preserved.

gzip has many options, as described in Table 18-1.

Table 18-1: gzip Options

Option Long Option Description

-c --stdout
--to-stdout

Write output to standard output and keep the
original files.

-d --decompress
--uncompress

Decompress. This causes gzip to act like
gunzip.

-f --force Force compression even if a compressed
version of the original file already exists.

-h --help Display usage information.

-l --list List compression statistics for each file
compressed.

-r --recursive If one or more arguments on the command line
is a directory, recursively compress files
contained within them.

-t --test Test the integrity of a compressed file.

-v --verbose Display verbose messages while compressing.

-number Set amount of compression. number is an
integer in the range of 1 (fastest, least
compression) to 9 (slowest, most
compression). The values 1 and 9 may also be
expressed as --fast and --best,
respectively. The default value is 6.

Let’s return to our earlier example.

[me@linuxbox ~]$ gzip foo.txt
[me@linuxbox ~]$ gzip -tv foo.txt.gz
foo.txt.gz: OK

236

Compressing Files

[me@linuxbox ~]$ gzip -d foo.txt.gz

Here, we replaced the file foo.txt with a compressed version named foo.txt.gz.
Next, we tested the integrity of the compressed version, using the -t and -v options. Fi-
nally, we decompressed the file to its original form.

gzip can also be used in interesting ways via standard input and output.

[me@linuxbox ~]$ ls -l /etc | gzip > foo.txt.gz

This command creates a compressed version of a directory listing.

The gunzip program, which uncompresses gzip files, assumes that filenames end in the
extension .gz, so it’s not necessary to specify it, as long as the specified name is not in
conflict with an existing uncompressed file.

[me@linuxbox ~]$ gunzip foo.txt

If our goal were only to view the contents of a compressed text file, we could do this:

[me@linuxbox ~]$ gunzip -c foo.txt | less

Alternately, there is a program supplied with gzip, called zcat, that is equivalent to
gunzip with the -c option. It can be used like the cat command on gzip compressed
files.

[me@linuxbox ~]$ zcat foo.txt.gz | less

Tip: There is a zless program, too. It performs the same function as the previ-
ous pipeline.

bzip2

The bzip2 program, by Julian Seward, is similar to gzip but uses a different compres-
sion algorithm that achieves higher levels of compression at the cost of compression
speed. In most regards, it works in the same fashion as gzip. A file compressed with

237

18 – Archiving and Backup

bzip2 is denoted with the extension .bz2.

[me@linuxbox ~]$ ls -l /etc > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-r--r-- 1 me me 15738 2018-10-17 13:51 foo.txt
[me@linuxbox ~]$ bzip2 foo.txt
[me@linuxbox ~]$ ls -l foo.txt.bz2
-rw-r--r-- 1 me me 2792 2018-10-17 13:51 foo.txt.bz2
[me@linuxbox ~]$ bunzip2 foo.txt.bz2

As we can see, bzip2 can be used the same way as gzip. All the options (except for -
r) that we discussed for gzip are also supported in bzip2. Note, however, that the
compression-level option (-number) has a somewhat different meaning to bzip2.
bzip2 comes with bunzip2 and bzcat for decompressing files.

bzip2 also comes with the bzip2recover program, which will try to recover dam-
aged .bz2 files.

Don’t Be Compressive Compulsive

I occasionally see people attempting to compress a file that has already been
compressed with an effective compression algorithm by doing something like
this:

$ gzip picture.jpg

Don’t do it. You’re probably just wasting time and space! If you apply compres-
sion to a file that is already compressed, you will usually end up with a larger file.
This is because all compression techniques involve some overhead that is added
to the file to describe the compression. If you try to compress a file that already
contains no redundant information, the compression will most often not result in
any savings to offset the additional overhead.

Archiving Files

A common file-management task often used in conjunction with compression is archiv-
ing. Archiving is the process of gathering up many files and bundling them together into a
single large file. Archiving is often done as part of system backups. It is also used when
old data is moved from a system to some type of long-term storage.

238

Archiving Files

tar

In the Unix-like world of software, the tar program is the classic tool for archiving files.
Its name, short for tape archive, reveals its roots as a tool for making backup tapes. While
it is still used for that traditional task, it is equally adept on other storage devices. We of-
ten see filenames that end with the extension .tar or .tgz, which indicate a “plain” tar
archive and a gzipped archive, respectively. A tar archive can consist of a group of sepa-
rate files, one or more directory hierarchies, or a mixture of both. The command syntax
works like this:

tar mode[options] pathname...

Here mode is one of the following operating modes listed in Table 18-2 (only a partial list
is shown here; see the tar man page for a complete list).

Table 18-2: tar Modes

Mode Description

c Create an archive from a list of files and/or directories.

x Extract an archive.

r Append specified pathnames to the end of an archive.

t List the contents of an archive.

tar uses a slightly odd way of expressing options, so we’ll need some examples to show
how it works. First, let’s re-create our playground from the previous chapter.

[me@linuxbox ~]$ mkdir -p playground/dir-{001..100}
[me@linuxbox ~]$ touch playground/dir-{001..100}/file-{A..Z}

Next, let’s create a tar archive of the entire playground.

[me@linuxbox ~]$ tar cf playground.tar playground

This command creates a tar archive named playground.tar that contains the entire
playground directory hierarchy. We can see that the mode and the f option, which is used
to specify the name of the tar archive, may be joined together and do not require a lead-
ing dash. Note, however, that the mode must always be specified first, before any other
option.

To list the contents of the archive, we can do this:

239

18 – Archiving and Backup

[me@linuxbox ~]$ tar tf playground.tar

For a more detailed listing, we can add the v (verbose) option.

[me@linuxbox ~]$ tar tvf playground.tar

Now, let’s extract the playground in a new location. We will do this by creating a new di-
rectory named foo, changing the directory and extracting the tar archive.

[me@linuxbox ~]$ mkdir foo
[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground.tar
[me@linuxbox foo]$ ls
playground

If we examine the contents of ~/foo/playground, we see that the archive was suc-
cessfully installed, creating a precise reproduction of the original files. There is one
caveat, however. Unless we are operating as the superuser, files and directories extracted
from archives take on the ownership of the user performing the restoration, rather than
the original owner.

Another interesting behavior of tar is the way it handles pathnames in archives. The de-
fault for pathnames is relative, rather than absolute. tar does this by simply removing
any leading slash from the pathname when creating the archive. To demonstrate, we will
re-create our archive, this time specifying an absolute pathname.

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ tar cf playground2.tar ~/playground

Remember, ~/playground will expand into /home/me/playground when we
press the Enter key, so we will get an absolute pathname for our demonstration. Next,
we will extract the archive as before and watch what happens.

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground2.tar
[me@linuxbox foo]$ ls
home playground
[me@linuxbox foo]$ ls home

240

Archiving Files

me
[me@linuxbox foo]$ ls home/me
playground

Here we can see that when we extracted our second archive, it re-created the directory
home/me/playground relative to our current working directory, ~/foo, not relative
to the root directory, as would have been the case with an absolute pathname. This may
seem like an odd way for it to work, but it’s actually more useful this way, because it al-
lows us to extract archives to any location rather than being forced to extract them to their
original locations. Repeating the exercise with the inclusion of the verbose option (v) will
give a clearer picture of what’s going on.

Let’s consider a hypothetical, yet practical, example of tar in action. Imagine we want
to copy the home directory and its contents from one system to another and we have a
large USB hard drive that we can use for the transfer. On our modern Linux system, the
drive is “automagically” mounted in the /media directory. Let’s also imagine that the
disk has a volume name of BigDisk when we attach it. To make the tar archive, we can
do the following:

[me@linuxbox ~]$ sudo tar cf /media/BigDisk/home.tar /home

After the tar file is written, we unmount the drive and attach it to the second computer.
Again, it is mounted at /media/BigDisk. To extract the archive, we do this:

[me@linuxbox2 ~]$ cd /
[me@linuxbox2 /]$ sudo tar xf /media/BigDisk/home.tar

What’s important to see here is that we must first change directory to / so that the extrac-
tion is relative to the root directory, since all pathnames within the archive are relative.

When extracting an archive, it’s possible to limit what is extracted from the archive. For
example, if we wanted to extract a single file from an archive, it could be done like this:

tar xf archive.tar pathname

By adding the trailing pathname to the command, tar will restore only the specified file.
Multiple pathnames may be specified. Note that the pathname must be the full, exact rela-
tive pathname as stored in the archive. When specifying pathnames, wildcards are not
normally supported; however, the GNU version of tar (which is the version most often

241

18 – Archiving and Backup

found in Linux distributions) supports them with the --wildcards option. Here is an
example using our previous playground.tar file:

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground2.tar --wildcards 'home/me/pla
yground/dir-*/file-A'

This command will extract only files matching the specified pathname including the
wildcard dir-*.

tar is often used in conjunction with find to produce archives. In this example, we will
use find to produce a set of files to include in an archive.

[me@linuxbox ~]$ find playground -name 'file-A' -exec tar rf
playground.tar '{}' '+'

Here we use find to match all the files in playground named file-A and then, us-
ing the -exec action, we invoke tar in the append mode (r) to add the matching files
to the archive playground.tar.

Using tar with find is a good way of creating incremental backups of a directory tree
or an entire system. By using find to match files newer than a timestamp file, we could
create an archive that contains only those files newer than the last archive, assuming that
the timestamp file is updated right after each archive is created.

tar can also make use of both standard input and output. Here is a comprehensive exam-
ple:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ find playground -name 'file-A' | tar cf - --files-
from=- | gzip > playground.tgz

In this example, we used the find program to produce a list of matching files and piped
them into tar. If the filename - is specified, it is taken to mean standard input or output,
as needed. (By the way, this convention of using - to represent standard input/output is
used by a number of other programs, too). The --files-from option (which may also
be specified as -T) causes tar to read its list of pathnames from a file rather than the
command line. Lastly, the archive produced by tar is piped into gzip to create the
compressed archive playground.tgz. The .tgz extension is the conventional exten-
sion given to gzip-compressed tar files. The extension .tar.gz is also used some-

242

Archiving Files

times.

While we used the gzip program externally to produce our compressed archive, modern
versions of GNU tar support both gzip and bzip2 compression directly with the use
of the z and j options, respectively. Using our previous example as a base, we can sim-
plify it this way:

[me@linuxbox ~]$ find playground -name 'file-A' | tar czf
playground.tgz -T -

If we had wanted to create a bzip2-compressed archive instead, we could have done
this:

[me@linuxbox ~]$ find playground -name 'file-A' | tar cjf
playground.tbz -T -

By simply changing the compression option from z to j (and changing the output file’s
extension to .tbz to indicate a bzip2-compressed file) we enabled bzip2-compres-
sion.

Another interesting use of standard input and output with the tar command involves
transferring files between systems over a network. Imagine that we had two machines
running a Unix-like system equipped with tar and ssh. In such a scenario, we could
transfer a directory from a remote system (named remote-sys for this example) to our
local system.

[me@linuxbox ~]$ mkdir remote-stuff
[me@linuxbox ~]$ cd remote-stuff
[me@linuxbox remote-stuff]$ ssh remote-sys 'tar cf - Documents' | tar
xf -
me@remote-sys’s password:
[me@linuxbox remote-stuff]$ ls
Documents

Here we were able to copy a directory named Documents from the remote system re-
mote-sys to a directory within the directory named remote-stuff on the local sys-
tem. How did we do this? First, we launched the tar program on the remote system us-
ing ssh. You will recall that ssh allows us to execute a program remotely on a net-
worked computer and “see” the results on the local system — the standard output pro-
duced on the remote system is sent to the local system for viewing. We can take advan-

243

18 – Archiving and Backup

tage of this by having tar create an archive (the c mode) and send it to standard output,
rather than a file (the f option with the dash argument), thereby transporting the archive
over the encrypted tunnel provided by ssh to the local system. On the local system, we
execute tar and have it expand an archive (the x mode) supplied from standard input
(again, the f option with the dash argument).

zip

The zip program is both a compression tool and an archiver. The file format used by the
program is familiar to Windows users, as it reads and writes .zip files. In Linux, how-
ever, gzip is the predominant compression program, with bzip2 being a close second.

In its most basic usage, zip is invoked like this:

zip options zipfile file...

For example, to make a zip archive of our playground, we would do this:

[me@linuxbox ~]$ zip -r playground.zip playground

Unless we include the -r option for recursion, only the playground directory (but
none of its contents) is stored. Although the addition of the extension .zip is automatic,
we will include the file extension for clarity.

During the creation of the zip archive, zip will normally display a series of messages
like this:

 adding: playground/dir-020/file-Z (stored 0%)
 adding: playground/dir-020/file-Y (stored 0%)
 adding: playground/dir-020/file-X (stored 0%)
 adding: playground/dir-087/ (stored 0%)
 adding: playground/dir-087/file-S (stored 0%)

These messages show the status of each file added to the archive. zip will add files to
the archive using one of two storage methods: either it will “store” a file without com-
pression, as shown here, or it will “deflate” the file that performs compression. The nu-
meric value displayed after the storage method indicates the amount of compression
achieved. Since our playground contains only empty files, no compression is performed
on its contents.

Extracting the contents of a zip file is straightforward when using the unzip program.

244

Archiving Files

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ unzip ../playground.zip

One thing to note about zip (as opposed to tar) is that if an existing archive is speci-
fied, it is updated rather than replaced. This means the existing archive is preserved, but
new files are added and matching files are replaced.

Files may be listed and extracted selectively from a zip archive by specifying them to
unzip.

[me@linuxbox ~]$ unzip -l playground.zip playground/dir-087/file-Z
Archive: ../playground.zip
 Length Date Time Name
 -------- ---- ---- ----
 0 10-05-16 09:25 playground/dir-087/file-Z
 -------- -------
 0 1 file
[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ unzip ../playground.zip playground/dir-087/file-Z
Archive: ../playground.zip
replace playground/dir-087/file-Z? [y]es, [n]o, [A]ll, [N]one,
[r]ename: y
 extracting: playground/dir-087/file-Z

Using the -l option causes unzip to merely list the contents of the archive without ex-
tracting the file. If no files are specified, unzip will list all files in the archive. The -v
option can be added to increase the verbosity of the listing. Note that when the archive
extraction conflicts with an existing file, the user is prompted before the file is replaced.

Like tar, zip can make use of standard input and output, though its implementation is
somewhat less useful. It is possible to pipe a list of filenames to zip via the -@ option.

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ find playground -name "file-A" | zip -@ file-A.zip

Here we use find to generate a list of files matching the test -name "file-A" and
then pipe the list into zip, which creates the archive file-A.zip containing the se-
lected files.

zip also supports writing its output to standard output, but its use is limited because few
programs can make use of the output. Unfortunately, the unzip program does not accept

245

18 – Archiving and Backup

standard input. This prevents zip and unzip from being used together to perform net-
work file copying like tar.

zip can, however, accept standard input, so it can be used to compress the output of
other programs.

[me@linuxbox ~]$ ls -l /etc/ | zip ls-etc.zip -
 adding: - (deflated 80%)

In this example, we pipe the output of ls into zip. Like tar, zip interprets the trailing
dash as “use standard input for the input file.”

The unzip program allows its output to be sent to standard output when the -p (for
pipe) option is specified.

[me@linuxbox ~]$ unzip -p ls-etc.zip | less

We touched on some of the basic things that zip/unzip can do. They both have a lot of
options that add to their flexibility, though some are platform specific to other systems.
The man pages for both zip and unzip are pretty good and contain useful examples.
However, the main use of these programs is for exchanging files with Windows systems,
rather than performing compression and archiving on Linux, where tar and gzip are
greatly preferred.

Synchronizing Files and Directories

A common strategy for maintaining a backup copy of a system involves keeping one or
more directories synchronized with another directory (or directories) located on either the
local system (usually a removable storage device of some kind) or a remote system. We
might, for example, have a local copy of a website under development and synchronize it
from time to time with the “live” copy on a remote web server.

In the Unix-like world, the preferred tool for this task is rsync. This program can syn-
chronize both local and remote directories by using the rsync remote-update protocol,
which allows rsync to quickly detect the differences between two directories and per-
form the minimum amount of copying required to bring them into sync. This makes
rsync very fast and economical to use, compared to other kinds of copy programs.

rsync is invoked like this:

rsync options source destination

where source and destination are one of the following:

246

Synchronizing Files and Directories

● A local file or directory

● A remote file or directory in the form of [user@]host:path

● A remote rsync server specified with a URI of rsync://[user@]host[:port]/path

Note that either the source or the destination must be a local file. Remote-to-remote copy-
ing is not supported.

Let’s try rsync out on some local files. First, let’s clean out our foo directory.

[me@linuxbox ~]$ rm -rf foo/*

Next, we’ll synchronize the playground directory with a corresponding copy in foo.

[me@linuxbox ~]$ rsync -av playground foo

We’ve included both the -a option (for archiving — causes recursion and preservation of
file attributes) and the -v option (verbose output) to make a mirror of the playground
directory within foo. While the command runs, we will see a list of the files and directo-
ries being copied. At the end, we will see a summary message like this indicating the
amount of copying performed:

sent 135759 bytes received 57870 bytes 387258.00 bytes/sec
total size is 3230 speedup is 0.02

If we run the command again, we will see a different result.

[me@linuxbox ~]$ rsync -av playground foo
building file list ... done

sent 22635 bytes received 20 bytes 45310.00 bytes/sec
total size is 3230 speedup is 0.14

Notice that there was no listing of files. This is because rsync detected that there were
no differences between ~/playground and ~/foo/playground, and therefore it
didn’t need to copy anything. If we modify a file in playground and run rsync again:

[me@linuxbox ~]$ touch playground/dir-099/file-Z

247

18 – Archiving and Backup

[me@linuxbox ~]$ rsync -av playground foo
building file list ... done
playground/dir-099/file-Z
sent 22685 bytes received 42 bytes 45454.00 bytes/sec
total size is 3230 speedup is 0.14

we see that rsync detected the change and copied only the updated file.

There is a subtle but useful feature we can use when we specify an rsync source. Let’s
consider two directories.

[me@linuxbox ~]$ ls
source destination

Directory source contains one file named file1 and directory destination is
empty. If we perform a copy of source to destination like so:

[me@linuxbox ~]$ rsync source destination

then rsync copies the directory source into destination.

[me@linuxbox ~]$ ls destination
source

However, if we append a trailing / to the source directory name, rsync will copy only
the contents of the source directory and not the directory itself.

[me@linuxbox ~]$ rsync source/ destination
[me@linuxbox ~]$ ls destination
file1

This is handy if we want only the contents of a directory copied without creating another
level of directories within the destination. We can think of it as being like source/* in
its outcome, but this method will copy all of the source directory’s content including the
hidden files.

As a practical example, let’s consider the imaginary external hard drive that we used ear-
lier with tar. If we attach the drive to our system and it is mounted at /media/

248

mailto:me@linuxbox
mailto:me@linuxbox
mailto:me@linuxbox
mailto:me@linuxbox
mailto:me@linuxbox

Synchronizing Files and Directories

BigDisk once again, we can perform a useful system backup by first creating a direc-
tory named /backup on the external drive and then using rsync to copy the most im-
portant stuff from our system to the external drive.

[me@linuxbox ~]$ mkdir /media/BigDisk/backup
[me@linuxbox ~]$ sudo rsync -av --delete /etc /home /usr/local
/media/BigDisk/backup

In this example, we copied the /etc, /home, and /usr/local directories from our
system to our imaginary storage device. We included the --delete option to remove
files that may have existed on the backup device that no longer existed on the source de-
vice (this is irrelevant the first time we make a backup but will be useful on subsequent
copies). Repeating the procedure of attaching the external drive and running this rsync
command would be a useful (though not ideal) way of keeping a small system backed up.
Of course, an alias would be helpful here, too. We could create an alias and add it to our
.bashrc file to provide this feature.

alias backup='sudo rsync -av --delete /etc /home /usr/local
/media/BigDisk/backup'

Now all we have to do is attach our external drive and run the backup command to do
the job.

Using rsync Over a Network

One of the real beauties of rsync is that it can be used to copy files over a network. Af-
ter all, the r in rsync stands for “remote.” Remote copying can be done in one of two
ways. The first way is with another system that has rsync installed, along with a remote
shell program such as ssh. Let’s say we had another system on our local network with a
lot of available hard drive space and we wanted to perform our backup operation using
the remote system instead of an external drive. Assuming that it already had a directory
named /backup where we could deliver our files, we could do this:

[me@linuxbox ~]$ sudo rsync -av --delete --rsh=ssh /etc /home
/usr/local remote-sys:/backup

We made two changes to our command to facilitate the network copy. First, we added the
--rsh=ssh option, which instructs rsync to use the ssh program as its remote shell.

249

18 – Archiving and Backup

In this way, we were able to use an ssh-encrypted tunnel to securely transfer the data
from the local system to the remote host. Second, we specified the remote host by prefix-
ing its name (in this case the remote host is named remote-sys) to the destination
pathname.

The second way that rsync can be used to synchronize files over a network is by using
an rsync server. rsync can be configured to run as a daemon and listen to incoming re-
quests for synchronization. This is often done to allow mirroring of a remote system. For
example, Red Hat Software maintains a large repository of software packages under de-
velopment for its Fedora distribution. It is useful for software testers to mirror this collec-
tion during the testing phase of the distribution release cycle. Since files in the repository
change frequently (often more than once a day), it is desirable to maintain a local mirror
by periodic synchronization, rather than by bulk copying of the repository. One of these
repositories is kept at Duke University; we could mirror it using our local copy of rsync
and their rsync server like this:

[me@linuxbox ~]$ mkdir fedora-devel
[me@linuxbox ~]$ rsync -av –delete rsync://archive.linux.duke.edu/
fedora/linux/development/rawhide/Everything/x86_64/os/ fedora-devel

In this example, we use the URI of the remote rsync server, which consists of a proto-
col (rsync://), followed by the remote host-name (archive.linux.duke.edu),
followed by the pathname of the repository.

Summing Up

We've looked at the common compression and archiving programs used on Linux and
other Unix-like operating systems. For archiving files, the tar/gzip combination is the
preferred method on Unix-like systems while zip/unzip is used for interoperability
with Windows systems. Finally, we looked at the rsync program (a personal favorite)
which is very handy for efficient synchronization of files and directories across systems.

Further Reading

● The man pages for all of the commands discussed here are pretty clear and con-
tain useful examples. In addition, the GNU Project has a good online manual for
its version of tar. It can be found here:
http://www.gnu.org/software/tar/manual/index.html

250

http://www.gnu.org/software/tar/manual/index.html

