
16 – Networking

16 – Networking

When it comes to networking, there is probably nothing that cannot be done with Linux.
Linux is used to build all sorts of networking systems and appliances, including firewalls,
routers, name servers, network-attached storage (NAS) boxes and on and on.

Just as the subject of networking is vast, so are the number of commands that can be used
to configure and control it. We will focus our attention on just a few of the most fre-
quently used ones. The commands chosen for examination include those used to monitor
networks and those used to transfer files. In addition, we are going to explore the ssh
program that is used to perform remote logins. This chapter will cover the following
commands:

● ping – Send an ICMP ECHO_REQUEST to network hosts

● traceroute – Print the route packets trace to a network host

● ip – Show / manipulate routing, devices, policy routing and tunnels

● netstat – Print network connections, routing tables, interface statistics, mas-
querade connections, and multicast memberships

● ftp – Internet file transfer program

● wget – Non-interactive network downloader

● ssh – OpenSSH SSH client (remote login program)

We’re going to assume a little background in networking. In this, the Internet age, every-
one using a computer needs a basic understanding of networking concepts. To make full
use of this chapter we should be familiar with the following terms:

● Internet protocol (IP) address

● Host and domain name

● Uniform resource identifier (URI)

Please see the “Further Reading” section below for some useful articles regarding these
terms.

201

16 – Networking

Note: Some of the commands we will cover may (depending on your distribu-
tion) require the installation of additional packages from your distribution’s
repositories, and some may require superuser privileges to execute.

Examining and Monitoring a Network

Even if you’re not the system administrator, it’s often helpful to examine the performance
and operation of a network.

ping

The most basic network command is ping. The ping command sends a special network
packet called an ICMP ECHO_REQUEST to a specified host. Most network devices re-
ceiving this packet will reply to it, allowing the network connection to be verified.

Note: It is possible to configure most network devices (including Linux hosts) to
ignore these packets. This is usually done for security reasons, to partially ob-
scure a host from a potential attacker. It is also common for firewalls to be con-
figured to block ICMP traffic.

For example, to see whether we can reach linuxcommand.org (one of our favorite
sites ;-), we can use ping like this:

[me@linuxbox ~]$ ping linuxcommand.org

Once started, ping continues to send packets at a specified interval (default is one sec-
ond) until it is interrupted.

[me@linuxbox ~]$ ping linuxcommand.org
PING linuxcommand.org (66.35.250.210) 56(84) bytes of data.
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=1
ttl=43 time=107 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=2
ttl=43 time=108 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=3
ttl=43 time=106 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=4
ttl=43 time=106 ms

202

Examining and Monitoring a Network

64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=5
ttl=43 time=105 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=6
ttl=43 time=107 ms

--- linuxcommand.org ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 6010ms
rtt min/avg/max/mdev = 105.647/107.052/108.118/0.824 ms

After it is interrupted (in this case after the sixth packet) by pressing Ctrl-c, ping
prints performance statistics. A properly performing network will exhibit 0 percent packet
loss. A successful “ping” will indicate that the elements of the network (its interface
cards, cabling, routing, and gateways) are in generally good working order.

traceroute

The traceroute program (some systems use the similar tracepath program in-
stead) lists all the “hops” network traffic takes to get from the local system to a specified
host. For example, to see the route taken to reach slashdot.org, we would do this:

[me@linuxbox ~]$ traceroute slashdot.org

The output looks like this:

traceroute to slashdot.org (216.34.181.45), 30 hops max, 40 byte
packets
 1 ipcop.localdomain (192.168.1.1) 1.066 ms 1.366 ms 1.720 ms
 2 * * *
 3 ge-4-13-ur01.rockville.md.bad.comcast.net (68.87.130.9) 14.622
ms 14.885 ms 15.169 ms
 4 po-30-ur02.rockville.md.bad.comcast.net (68.87.129.154) 17.634
ms 17.626 ms 17.899 ms
 5 po-60-ur03.rockville.md.bad.comcast.net (68.87.129.158) 15.992
ms 15.983 ms 16.256 ms
 6 po-30-ar01.howardcounty.md.bad.comcast.net (68.87.136.5) 22.835
ms 14.233 ms 14.405 ms
 7 po-10-ar02.whitemarsh.md.bad.comcast.net (68.87.129.34) 16.154
ms 13.600 ms 18.867 ms
 8 te-0-3-0-1-cr01.philadelphia.pa.ibone.comcast.net (68.86.90.77)
21.951 ms 21.073 ms 21.557 ms

203

16 – Networking

 9 pos-0-8-0-0-cr01.newyork.ny.ibone.comcast.net (68.86.85.10)
22.917 ms 21.884 ms 22.126 ms
10 204.70.144.1 (204.70.144.1) 43.110 ms 21.248 ms 21.264 ms
11 cr1-pos-0-7-3-1.newyork.savvis.net (204.70.195.93) 21.857 ms
cr2-pos-0-0-3-1.newyork.savvis.net (204.70.204.238) 19.556 ms cr1-
pos-0-7-3-1.newyork.savvis.net (204.70.195.93) 19.634 ms
12 cr2-pos-0-7-3-0.chicago.savvis.net (204.70.192.109) 41.586 ms
42.843 ms cr2-tengig-0-0-2-0.chicago.savvis.net (204.70.196.242)
43.115 ms
13 hr2-tengigabitethernet-12-1.elkgrovech3.savvis.net
(204.70.195.122) 44.215 ms 41.833 ms 45.658 ms
14 csr1-ve241.elkgrovech3.savvis.net (216.64.194.42) 46.840 ms
43.372 ms 47.041 ms
15 64.27.160.194 (64.27.160.194) 56.137 ms 55.887 ms 52.810 ms
16 slashdot.org (216.34.181.45) 42.727 ms 42.016 ms 41.437 ms

In the output, we can see that connecting from our test system to slashdot.org re-
quires traversing 16 routers. For routers that provided identifying information, we see
their hostnames, IP addresses, and performance data, which includes three samples of
round-trip time from the local system to the router. For routers that do not provide identi-
fying information (because of router configuration, network congestion, firewalls, etc.),
we see asterisks as in the line for hop number 2. In cases where routing information is
blocked, we can sometimes overcome this by adding either the -T or -I option to the
traceroute command.

ip

The ip program is a multi-purpose network configuration tool that makes use of the full
range networking of features available in modern Linux kernels. It replaces the earlier
and now deprecated ifconfig program. With ip, we can examine a system's network
interfaces and routing table.

[me@linuxbox ~]$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast

204

Examining and Monitoring a Network

state UP group default qlen 1000
 link/ether ac:22:0b:52:cf:84 brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.14/24 brd 192.168.1.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::ae22:bff:fe52:cf84/64 scope link
 valid_lft forever preferred_lft forever

In the example above, we see that our test system has two network interfaces. The first,
called lo, is the loopback interface, a virtual interface that the system uses to “talk to it-
self” and the second, called eth0, is the Ethernet interface.

When performing casual network diagnostics, the important things to look for are the
presence of the word UP in the first line for each interface, indicating that the network in-
terface is enabled, and the presence of a valid IP address in the inet field on the third
line. For systems using Dynamic Host Configuration Protocol (DHCP), a valid IP address
in this field will verify that the DHCP is working.

netstat

The netstat program is used to examine various network settings and statistics.
Through the use of its many options, we can look at a variety of features in our network
setup. Using the -ie option, we can examine the network interfaces in our system.

[me@linuxbox ~]$ netstat -ie
eth0 Link encap:Ethernet HWaddr 00:1d:09:9b:99:67
 inet addr:192.168.1.2 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::21d:9ff:fe9b:9967/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:238488 errors:0 dropped:0 overruns:0 frame:0
 TX packets:403217 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:153098921 (146.0 MB) TX bytes:261035246 (248.9 MB)
 Memory:fdfc0000-fdfe0000

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:2208 errors:0 dropped:0 overruns:0 frame:0
 TX packets:2208 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:111490 (108.8 KB) TX bytes:111490 (108.8 KB)

205

16 – Networking

Using the -r option will display the kernel’s network routing table. This shows how the
network is configured to send packets from network to network.

[me@linuxbox ~]$ netstat -r
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface

192.168.1.0 * 255.255.255.0 U 0 0 0 eth0
default 192.168.1.1 0.0.0.0 UG 0 0 0 eth0

In this simple example, we see a typical routing table for a client machine on a local area
network (LAN) behind a firewall/router. The first line of the listing shows the destination
192.168.1.0. IP addresses that end in zero refer to networks rather than individual
hosts, so this destination means any host on the LAN. The next field, Gateway, is the
name or IP address of the gateway (router) used to go from the current host to the destina-
tion network. An asterisk in this field indicates that no gateway is needed.

The last line contains the destination default. This means any traffic destined for a
network that is not otherwise listed in the table. In our example, we see that the gateway
is defined as a router with the address of 192.168.1.1, which presumably knows what
to do with the destination traffic.

Like ip, the netstat program has many options and we have looked only at a couple.
Check out the ip and netstat man pages for a complete list.

Transporting Files Over a Network

What good is a network unless we can move files across it? There are many programs
that move data over networks. We will cover two of them now and several more in later
sections.

ftp

One of the true “classic” programs, ftp gets its name from the protocol it uses, the File
Transfer Protocol. FTP was once the most widely used method of downloading files over
the Internet. Most, if not all, web browsers support it, and you often see URIs starting
with the protocol ftp://.

Before there were web browsers, there was the ftp program. ftp is used to communi-
cate with FTP servers, machines that contain files that can be uploaded and downloaded
over a network.

FTP (in its original form) is not secure because it sends account names and passwords in

206

Transporting Files Over a Network

cleartext. This means they are not encrypted and anyone sniffing the network can see
them. Because of this, almost all FTP done over the Internet is done by anonymous FTP
servers. An anonymous server allows anyone to log in using the login name “anony-
mous” and a meaningless password.

In the example below, we show a typical session with the ftp program downloading an
Ubuntu iso image located in the /pub/cd_images/Ubuntu-18.04 directory of the
anonymous FTP server fileserver:

[me@linuxbox ~]$ ftp fileserver
Connected to fileserver.localdomain.
220 (vsFTPd 2.0.1)
Name (fileserver:me): anonymous
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd pub/cd_images/Ubuntu-18.04
250 Directory successfully changed.
ftp> ls
200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.
-rw-rw-r-- 1 500 500 733079552 Apr 25 03:53 ubuntu-
18.04-desktop-amd64.iso
226 Directory send OK.
ftp> lcd Desktop
Local directory now /home/me/Desktop
ftp> get ubuntu-18.04-desktop-amd64.iso
local: ubuntu-18.04-desktop-amd64.iso remote: ubuntu-18.04-desktop-
amd64.iso
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for ubuntu-18.04-desktop-
amd64.iso (733079552 bytes).
226 File send OK.
733079552 bytes received in 68.56 secs (10441.5 kB/s)
ftp> bye

Table 16-1 provides an explanation of the commands entered during this session.

Table 16-1: Examples of Interactive ftp Commands

Command Meaning

207

16 – Networking

ftp fileserver Invoke the ftp program and have it
connect to the FTP server
fileserver.

anonymous Login name. After the login prompt, a
password prompt will appear. Some
servers will accept a blank password;
others will require a password in the
form of an email address. In that case,
try something like
user@example.com.

cd pub/cd_images/Ubuntu-18.04 Change to the directory on the remote
system containing the desired file.
Note that on most anonymous FTP
servers, the files for public
downloading are found somewhere
under the pub directory.

ls List the directory on the remote
system.

lcd Desktop Change the directory on the local
system to ~/Desktop. In the
example, the ftp program was
invoked when the working directory
was ~. This command changes the
working directory to ~/Desktop.

get ubuntu-18.04-desktop-
amd64.iso

Tell the remote system to transfer the
file ubuntu-18.04-desktop-
amd64.iso to the local system.
Since the working directory on the
local system was changed to
~/Desktop, the file will be
downloaded there.

bye Log off the remote server and end the
ftp program session. The commands
quit and exit may also be used.

Typing help at the ftp> prompt will display a list of the supported commands. Using
ftp on a server where sufficient permissions have been granted, it is possible to perform

208

Transporting Files Over a Network

many ordinary file management tasks. It’s clumsy, but it does work.

lftp – A Better ftp

ftp is not the only command-line FTP client. In fact, there are many. One of the better
(and more popular) ones is lftp by Alexander Lukyanov. It works much like the tradi-
tional ftp program but has many additional convenience features including multiple-
protocol support (including HTTP), automatic retry on failed downloads, background
processes, tab completion of path names, and many more.

wget

Another popular command-line program for file downloading is wget. It is useful for
downloading content from both web and FTP sites. Single files, multiple files, and even
entire sites can be downloaded. To download the first page of linuxcommand.org we
could do this:

[me@linuxbox ~]$ wget http://linuxcommand.org/index.php
--11:02:51-- http://linuxcommand.org/index.php
 => `index.php'
Resolving linuxcommand.org... 66.35.250.210
Connecting to linuxcommand.org|66.35.250.210|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/html]

 [<=>] 3,120 --.--K/s

11:02:51 (161.75 MB/s) - `index.php' saved [3120]

The program's many options allow wget to recursively download, download files in the
background (allowing you to log off but continue downloading), and complete the down-
load of a partially downloaded file. These features are well documented in its better-than-
average man page.

Secure Communication with Remote Hosts

For many years, Unix-like operating systems have had the ability to be administered re-
motely via a network. In the early days, before the general adoption of the Internet, there
were a couple of popular programs used to log in to remote hosts. These were the
rlogin and telnet programs. These programs, however, suffer from the same fatal
flaw that the ftp program does; they transmit all their communications (including login

209

16 – Networking

names and passwords) in cleartext. This makes them wholly inappropriate for use in the
Internet age.

ssh

To address this problem, a new protocol called Secure Shell (SSH) was developed. SSH
solves the two basic problems of secure communication with a remote host.

1. It authenticates that the remote host is who it says it is (thus preventing so-called
man-in-the-middle attacks).

2. It encrypts all of the communications between the local and remote hosts.

SSH consists of two parts. An SSH server runs on the remote host, listening for incoming
connections, by default, on port 22, while an SSH client is used on the local system to
communicate with the remote server.

Most Linux distributions ship an implementation of SSH called OpenSSH from the
OpenBSD project. Some distributions include both the client and the server packages by
default (for example, Red Hat), while others (such as Ubuntu) only supply the client. To
enable a system to receive remote connections, it must have the OpenSSH-server
package installed, configured and running, and (if the system either is running or is be-
hind a firewall) it must allow incoming network connections on TCP port 22.

Tip: If you don’t have a remote system to connect to but want to try these exam-
ples, make sure the OpenSSH-server package is installed on your system and
use localhost as the name of the remote host. That way, your machine will
create network connections with itself.

The SSH client program used to connect to remote SSH servers is called, appropriately
enough, ssh. To connect to a remote host named remote-sys, we would use the ssh
client program like so:

[me@linuxbox ~]$ ssh remote-sys
The authenticity of host 'remote-sys (192.168.1.4)' can't be
established.
RSA key fingerprint is
41:ed:7a:df:23:19:bf:3c:a5:17:bc:61:b3:7f:d9:bb.
Are you sure you want to continue connecting (yes/no)?

The first time the connection is attempted, a message is displayed indicating that the au-
thenticity of the remote host cannot be established. This is because the client program has
never seen this remote host before. To accept the credentials of the remote host, enter

210

Secure Communication with Remote Hosts

“yes” when prompted. Once the connection is established, the user is prompted for a
password:

Warning: Permanently added 'remote-sys,192.168.1.4' (RSA) to the list
of known hosts.
me@remote-sys's password:

After the password is successfully entered, we receive the shell prompt from the remote
system.

Last login: Sat Aug 30 13:00:48 2016
[me@remote-sys ~]$

The remote shell session continues until the user enters the exit command at the remote
shell prompt, thereby closing the remote connection. At this point, the local shell session
resumes, and the local shell prompt reappears.

It is also possible to connect to remote systems using a different username. For example,
if the local user “me” had an account named “bob” on a remote system, user me could log
in to the account bob on the remote system as follows:

[me@linuxbox ~]$ ssh bob@remote-sys
bob@remote-sys's password:
Last login: Sat Aug 30 13:03:21 2016
[bob@remote-sys ~]$

As stated earlier, ssh verifies the authenticity of the remote host. If the remote host does
not successfully authenticate, the following message appears:

[me@linuxbox ~]$ ssh remote-sys
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle
attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
41:ed:7a:df:23:19:bf:3c:a5:17:bc:61:b3:7f:d9:bb.

211

16 – Networking

Please contact your system administrator.
Add correct host key in /home/me/.ssh/known_hosts to get rid of this
message.
Offending key in /home/me/.ssh/known_hosts:1
RSA host key for remote-sys has changed and you have requested strict
checking.
Host key verification failed.

This message is caused by one of two possible situations. First, an attacker may be at-
tempting a man-in-the-middle attack. This is rare, since everybody knows that ssh alerts
the user to this. The more likely culprit is that the remote system has been changed some-
how; for example, its operating system or SSH server has been reinstalled. In the interests
of security and safety, however, the first possibility should not be dismissed out of hand.
Always check with the administrator of the remote system when this message occurs.

After it has been determined that the message is because of a benign cause, it is safe to
correct the problem on the client side. This is done by using a text editor (vim perhaps)
to remove the obsolete key from the ~/.ssh/known_hosts file. In the example mes-
sage above, we see this:

Offending key in /home/me/.ssh/known_hosts:1

This means that the first line of the known_hosts file contains the offending key.
Delete this line from the file, and the ssh program will be able to accept new authentica-
tion credentials from the remote system.

Besides opening a shell session on a remote system, ssh allows us to execute a single
command on a remote system. For example, to execute the free command on a remote
host named remote-sys and have the results displayed on the local system, use this:

[me@linuxbox ~]$ ssh remote-sys free
me@twin4's password:
 total used free shared buffers cached

Mem: 775536 507184 268352 0 110068 154596

-/+ buffers/cache: 242520 533016
Swap: 1572856 0 1572856
[me@linuxbox ~]$

It’s possible to use this technique in more interesting ways, such as the following exam-

212

Secure Communication with Remote Hosts

ple in which we perform an ls on the remote system and redirect the output to a file on
the local system:

[me@linuxbox ~]$ ssh remote-sys 'ls *' > dirlist.txt
me@twin4's password:
[me@linuxbox ~]$

Notice the use of the single quotes in the command above. This is done because we do
not want the pathname expansion performed on the local machine; rather, we want it to
be performed on the remote system. Likewise, if we had wanted the output redirected to a
file on the remote machine, we could have placed the redirection operator and the file-
name within the single quotes.

[me@linuxbox ~]$ ssh remote-sys 'ls * > dirlist.txt'

Tunneling with SSH

Part of what happens when you establish a connection with a remote host via SSH
is that an encrypted tunnel is created between the local and remote systems. Nor-
mally, this tunnel is used to allow commands typed at the local system to be trans-
mitted safely to the remote system and for the results to be transmitted safely
back. In addition to this basic function, the SSH protocol allows most types of
network traffic to be sent through the encrypted tunnel, creating a sort of virtual
private network (VPN) between the local and remote systems.

Perhaps the most common use of this feature is to allow X Window system traffic
to be transmitted. On a system running an X server (that is, a machine displaying
a GUI), it is possible to launch and run an X client program (a graphical applica-
tion) on a remote system and have its display appear on the local system. It’s easy
to do; here’s an example. Let’s say we are sitting at a Linux system called lin-
uxbox that is running an X server, and we want to run the xload program on a
remote system named remote-sys to see the program’s graphical output on our
local system. We could do this:

[me@linuxbox ~]$ ssh -X remote-sys
me@remote-sys's password:
Last login: Mon Sep 08 13:23:11 2016
[me@remote-sys ~]$ xload

213

16 – Networking

After the xload command is executed on the remote system, its window appears
on the local system. On some systems, you may need to use the “-Y” option
rather than the “-X” option to do this.

scp and sftp

The OpenSSH package also includes two programs that can make use of an SSH-en-
crypted tunnel to copy files across the network. The first, scp (secure copy) is used
much like the familiar cp program to copy files. The most notable difference is that the
source or destination pathnames may be preceded with the name of a remote host, fol-
lowed by a colon character. For example, if we wanted to copy a document named doc-
ument.txt from our home directory on the remote system, remote-sys, to the cur-
rent working directory on our local system, we could do this:

[me@linuxbox ~]$ scp remote-sys:document.txt .
me@remote-sys's password:
document.txt 100% 5581 5.5KB/s 00:00
[me@linuxbox ~]$

As with ssh, you may apply a username to the beginning of the remote host’s name if
the desired remote host account name does not match that of the local system.

[me@linuxbox ~]$ scp bob@remote-sys:document.txt .

The second SSH file-copying program is sftp which, as its name implies, is a secure re-
placement for the ftp program. sftp works much like the original ftp program that
we used earlier; however, instead of transmitting everything in cleartext, it uses an SSH
encrypted tunnel. sftp has an important advantage over conventional ftp in that it does
not require an FTP server to be running on the remote host. It requires only the SSH
server. This means that any remote machine that can connect with the SSH client can also
be used as an FTP-like server. Here is a sample session:

[me@linuxbox ~]$ sftp remote-sys
Connecting to remote-sys...
me@remote-sys's password:
sftp> ls

214

Secure Communication with Remote Hosts

ubuntu-8.04-desktop-i386.iso
sftp> lcd Desktop
sftp> get ubuntu-8.04-desktop-i386.iso
Fetching /home/me/ubuntu-8.04-desktop-i386.iso to ubuntu-8.04-
desktop-i386.iso
/home/me/ubuntu-8.04-desktop-i386.iso 100% 699MB 7.4MB/s 01:35
sftp> bye

Tip: The SFTP protocol is supported by many of the graphical file managers
found in Linux distributions. Using either GNOME or KDE, we can enter a URI
beginning with sftp:// into the location bar and operate on files stored on a
remote system running an SSH server.

An SSH Client for Windows?

Let’s say you are sitting at a Windows machine but you need to log in to your
Linux server and get some real work done; what do you do? Get an SSH client
program for your Windows box, of course! There are a number of these. The most
popular one is probably PuTTY by Simon Tatham and his team. The PuTTY pro-
gram displays a terminal window and allows a Windows user to open an SSH (or
telnet) session on a remote host. The program also provides analogs for the scp
and sftp programs.

PuTTY is available at http://www.chiark.greenend.org.uk/~sgtatham/putty/

Summing Up

In this chapter, we surveyed the field of networking tools found on most Linux systems.
Since Linux is so widely used in servers and networking appliances, there are many more
that can be added by installing additional software. But even with the basic set of tools, it
is possible to perform many useful network-related tasks.

Further Reading

● For a broad (albeit dated) look at network administration, the Linux Documenta-
tion Project provides the Linux Network Administrator’s Guide:
http://tldp.org/LDP/nag2/index.html

215

http://tldp.org/LDP/nag2/index.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/

16 – Networking

● Wikipedia contains many good networking articles. Here are some of the basics:
http://en.wikipedia.org/wiki/Internet_protocol_address
http://en.wikipedia.org/wiki/Host_name
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier

216

http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Host_name
http://en.wikipedia.org/wiki/Internet_protocol_address

