
15 – Storage Media

15 – Storage Media

In previous chapters we looked at manipulating data at the file level. In this chapter, we
will consider data at the device level. Linux has amazing capabilities for handling storage
devices, whether physical storage, such as hard disks, network storage, or virtual storage
devices such as RAID (Redundant Array of Independent Disks) and LVM (Logical Vol-
ume Manager).

However, since this is not a book about system administration, we will not try to cover
this entire topic in depth. What we will try to do is introduce some of the concepts and
key commands that are used to manage storage devices.

To carry out the exercises in this chapter, we will use a USB flash drive and a CD-RW
disc (for systems equipped with a CD-ROM burner).

We will look at the following commands:

● mount – Mount a file system

● umount – Unmount a file system

● fsck – Check and repair a file system

● fdisk – Manipulate disk partition table

● mkfs – Create a file system

● dd – Convert and copy a file

● genisoimage (mkisofs) – Create an ISO 9660 image file

● wodim (cdrecord) – Write data to optical storage media

● md5sum – Calculate an MD5 checksum

Mounting and Unmounting Storage Devices

Recent advances in the Linux desktop have made storage device management extremely
easy for desktop users. For the most part, we attach a device to our system and it “just
works.” In the old days (say, 2004), this stuff had to be done manually. On non-desktop
systems (i.e., servers) this is still a largely manual procedure since servers often have ex-

182

Mounting and Unmounting Storage Devices

treme storage needs and complex configuration requirements.

The first step in managing a storage device is attaching the device to the file system tree.
This process, called mounting, allows the device to interact with the operating system. As
we recall from Chapter 2, Unix-like operating systems, like Linux, maintain a single file
system tree with devices attached at various points. This contrasts with other operating
systems such as MS-DOS and Windows that maintain separate file system trees for each
device (for example C:\, D:\, etc.).

A file named /etc/fstab (short for “file system table”) lists the devices (typically
hard disk partitions) that are to be mounted at boot time. Here is an example /etc/
fstab file from an early Fedora system:

LABEL=/12 / ext4 defaults 1 1
LABEL=/home /home ext4 defaults 1 2
LABEL=/boot /boot ext4 defaults 1 2
tmpfs /dev/shm tmpfs defaults 0 0
devpts /dev/pts devpts gid=5,mode=620 0 0
sysfs /sys sysfs defaults 0 0
proc /proc proc defaults 0 0
LABEL=SWAP-sda3 swap swap defaults 0 0

Most of the file systems listed in this example file are virtual and not applicable to our
discussion. For our purposes, the interesting ones are the first three:

LABEL=/12 / ext4 defaults 1 1
LABEL=/home /home ext4 defaults 1 2
LABEL=/boot /boot ext4 defaults 1 2

These are the hard disk partitions. Each line of the file consists of six fields, as described
in Table 15-1.

Table 15-1: /etc/fstab Fields

Field Contents Description

1 Device Traditionally, this field contains the actual name of a
device file associated with the physical device, such as
/dev/sda1 (the first partition of the first detected
hard disk). But with today's computers, which have
many devices that are hot pluggable (like USB drives),
many modern Linux distributions associate a device

183

15 – Storage Media

with a text label instead. This label (which is added to
the storage media when it is formatted) can be either a
simple text label or a randomly generated UUID
(Universally Unique Identifier). This label is read by
the operating system when the device is attached to the
system. That way, no matter which device file is
assigned to the actual physical device, it can still be
correctly identified.

 2 Mount point The directory where the device is attached to the file
system tree.

3 File system type Linux allows many file system types to be mounted.
Most native Linux file systems are Fourth Extended
File System (ext4), but many others are supported,
such as FAT16 (msdos), FAT32 (vfat), NTFS
(ntfs), CD-ROM (iso9660), etc.

4 Options File systems can be mounted with various options. It is
possible, for example, to mount file systems as read-
only or to prevent any programs from being executed
from them (a useful security feature for removable
media).

5 Frequency A single number that specifies if and when a file
system is to be backed up with the dump command.

6 Order A single number that specifies in what order file
systems should be checked with the fsck command.

Viewing a List of Mounted File Systems

The mount command is used to mount file systems. Entering the command without ar-
guments will display a list of the file systems currently mounted:

[me@linuxbox ~]$ mount
/dev/sda2 on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/sda5 on /home type ext4 (rw)
/dev/sda1 on /boot type ext4 (rw)

184

Mounting and Unmounting Storage Devices

tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)
fusectl on /sys/fs/fuse/connections type fusectl (rw)
/dev/sdd1 on /media/disk type vfat (rw,nosuid,nodev,noatime,
uhelper=hal,uid=500,utf8,shortname=lower)
twin4:/musicbox on /misc/musicbox type nfs4 (rw,addr=192.168.1.4)

The format of the listing is as follows: device on mount_point type file_system_type (op-
tions). For example, the first line shows that device /dev/sda2 is mounted as the root
file system, is of type ext4, and is both readable and writable (the option “rw”). This list-
ing also has two interesting entries at the bottom of the list. The next-to-last entry shows a
2GB SD memory card in a card reader mounted at /media/disk, and the last entry is a
network drive mounted at /misc/musicbox.

For our first experiment, we will work with a CD-ROM. First, let's look at a system be-
fore a CD-ROM is inserted:

[me@linuxbox ~]$ mount
/dev/mapper/VolGroup00-LogVol00 on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/sda1 on /boot type ext4 (rw)
tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)

This listing is from a CentOS system, which is using LVM (Logical Volume Manager) to
create its root file system. Like many modern Linux distributions, this system will at-
tempt to automatically mount the CD-ROM after insertion. After we insert the disc, we
see the following:

[me@linuxbox ~]$ mount
/dev/mapper/VolGroup00-LogVol00 on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/hda1 on /boot type ext4 (rw)
tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)

185

15 – Storage Media

sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)
/dev/sdc on /media/live-1.0.10-8 type iso9660 (ro,noexec,nosuid,
nodev,uid=500)

After we insert the disc, we see the same listing as before with one additional entry. At
the end of the listing we see that the CD-ROM (which is device /dev/sdc on this sys-
tem) has been mounted on /media/live-1.0.10-8, and is type iso9660 (a CD-
ROM). For the purposes of our experiment, we're interested in the name of the device.
When you conduct this experiment yourself, the device name will most likely be differ-
ent.

Warning: In the examples that follow, it is vitally important that you pay close
attention to the actual device names in use on your system and do not use the
names used in this text!

Also note that audio CDs are not the same as CD-ROMs. Audio CDs do not con-
tain file systems and thus cannot be mounted in the usual sense.

Now that we have the device name of the CD-ROM drive, let's unmount the disc and re-
mount it at another location in the file system tree. To do this, we become the superuser
(using the command appropriate for our system) and unmount the disc with the umount
(notice the spelling) command.

[me@linuxbox ~]$ su -
Password:
[root@linuxbox ~]# umount /dev/sdc

The next step is to create a new mount point for the disk. A mount point is simply a direc-
tory somewhere on the file system tree. There’s nothing special about it. It doesn't even
have to be an empty directory, though if you mount a device on a non-empty directory,
you will not be able to see the directory's previous contents until you unmount the device.
For our purposes, we will create a new directory.

[root@linuxbox ~]# mkdir /mnt/cdrom

Finally, we mount the CD-ROM at the new mount point. The -t option is used to specify
the file system type.

186

Mounting and Unmounting Storage Devices

[root@linuxbox ~]# mount -t iso9660 /dev/sdc /mnt/cdrom

Afterward, we can examine the contents of the CD-ROM via the new mount point.

[root@linuxbox ~]# cd /mnt/cdrom
[root@linuxbox cdrom]# ls

Notice what happens when we try to unmount the CD-ROM.

[root@linuxbox cdrom]# umount /dev/sdc
umount: /mnt/cdrom: device is busy

Why is this? The reason is that we cannot unmount a device if the device is being used by
someone or some process. In this case, we changed our working directory to the mount
point for the CD-ROM, which causes the device to be busy. We can easily remedy the is-
sue by changing the working directory to something other than the mount point:

[root@linuxbox cdrom]# cd
[root@linuxbox ~]# umount /dev/sdc

Now the device unmounts successfully.

Why Unmounting Is Important

If you look at the output of the free command, which displays statistics about
memory usage, you will see a statistic called buffers. Computer systems are de-
signed to go as fast as possible. One of the impediments to system speed is slow
devices. Printers are a good example. Even the fastest printer is extremely slow
by computer standards. A computer would be very slow indeed if it had to stop
and wait for a printer to finish printing a page. In the early days of PCs (before
multi-tasking), this was a real problem. If you were working on a spreadsheet or
text document, the computer would stop and become unavailable every time you
printed. The computer would send the data to the printer as fast as the printer
could accept it, but it was very slow since printers don't print very fast. This prob-
lem was solved by the advent of the printer buffer, a device containing some
RAM memory that would sit between the computer and the printer. With the

187

15 – Storage Media

printer buffer in place, the computer would send the printer output to the buffer,
and it would quickly be stored in the fast RAM so the computer could go back to
work without waiting. Meanwhile, the printer buffer would slowly spool the data
to the printer from the buffer's memory at the speed at which the printer could ac-
cept it.

This idea of buffering is used extensively in computers to make them faster. Don't
let the need to occasionally read or write data to or from slow devices impede the
speed of the system. Operating systems store data that has been read from and is
to be written to storage devices in memory for as long as possible before actually
having to interact with the slower device. On a Linux system, for example, you
will notice that the system seems to fill up memory the longer it is used. This does
not mean Linux is “using” all the memory; it means that Linux is taking advan-
tage of all the available memory to do as much buffering as it can.

This buffering allows writing to storage devices to be done very quickly because
writing to the physical device is being deferred to a future time. In the meantime,
the data destined for the device is piling up in memory. From time to time, the op-
erating system will write this data to the physical device.

Unmounting a device entails writing all the remaining data to the device so that it
can be safely removed. If the device is removed without unmounting it first, the
possibility exists that not all the data destined for the device has been transferred.
In some cases, this data may include vital directory updates, which will lead to
file system corruption, one of the worst things that can happen on a computer.

Determining Device Names

It's sometimes difficult to determine the name of a device. In the old days, it wasn't very
hard. A device was always in the same place and it didn't change. Unix-like systems like
it that way. When Unix was developed, “changing a disk drive” involved using a forklift
to remove a washing machine-sized device from the computer room. In recent years, the
typical desktop hardware configuration has become quite dynamic, and Linux has
evolved to become more flexible than its ancestors.

In the examples above we took advantage of the modern Linux desktop's ability to “au-
tomagically” mount the device and then determine the name after the fact. But what if we
are managing a server or some other environment where this does not occur? How can
we figure it out?

First, let's look at how the system names devices. If we list the contents of the /dev di-
rectory (where all devices live), we can see that there are lots and lots of devices.

188

Mounting and Unmounting Storage Devices

[me@linuxbox ~]$ ls /dev

The contents of this listing reveal some patterns of device naming. Table 15-2 outlines a
few of these patterns.

Table 15-2: Linux Storage Device Names

Pattern Device

/dev/fd* Floppy disk drives.

/dev/hd* IDE (PATA) disks on older systems. Typical motherboards
contain two IDE connectors or channels, each with a cable with
two attachment points for drives. The first drive on the cable is
called the master device, and the second is called the slave
device. The device names are ordered such that /dev/hda
refers to the master device on the first channel, /dev/hdb is the
slave device on the first channel; /dev/hdc is the master
device on the second channel, and so on. A trailing digit indicates
the partition number on the device. For example, /dev/hda1
refers to the first partition on the first hard drive on the system,
while /dev/hda refers to the entire drive.

/dev/lp* Printers.

/dev/sd* SCSI disks. On modern Linux systems, the kernel treats all disk-
like devices (including PATA/SATA hard disks, flash drives, and
USB mass storage devices such as portable music players and
digital cameras) as SCSI disks. The rest of the naming system is
similar to the older /dev/hd* naming scheme described above.

/dev/sr* Optical drives (CD/DVD readers and burners).

In addition, we often see symbolic links such as /dev/cdrom, /dev/dvd, and /dev/
floppy, which point to the actual device files, provided as a convenience.

If you are working on a system that does not automatically mount removable devices,
you can use the following technique to determine how the removable device is named
when it is attached. First, start a real-time view of the /var/log/messages or /
var/log/syslog file (you may require superuser privileges for this).

[me@linuxbox ~]$ sudo tail -f /var/log/messages

189

15 – Storage Media

The last few lines of the file will be displayed and then will pause. Next, plug in the re-
movable device. In this example, we will use a 16MB flash drive. Almost immediately,
the kernel will notice the device and probe it.

Jul 23 10:07:53 linuxbox kernel: usb 3-2: new full speed USB device
using uhci_hcd and address 2
Jul 23 10:07:53 linuxbox kernel: usb 3-2: configuration #1 chosen
from 1 choice
Jul 23 10:07:53 linuxbox kernel: scsi3 : SCSI emulation for USB Mass
Storage devices
Jul 23 10:07:58 linuxbox kernel: scsi scan: INQUIRY result too short
(5), using 36
Jul 23 10:07:58 linuxbox kernel: scsi 3:0:0:0: Direct-Access Easy
Disk 1.00 PQ: 0 ANSI: 2
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] 31263 512-byte
hardware sectors (16 MB)
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Write Protect is
off
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Assuming drive
cache: write through
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] 31263 512-byte
hardware sectors (16 MB)
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Write Protect is
off
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Assuming drive
cache: write through
Jul 23 10:07:59 linuxbox kernel: sdb: sdb1
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Attached SCSI
removable disk
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: Attached scsi generic
sg3 type 0

After the display pauses again, press Ctrl-c to get the prompt back. The interesting
parts of the output are the repeated references to [sdb], which matches our expectation
of a SCSI disk device name. Knowing this, these two lines become particularly illumi-
nating:

Jul 23 10:07:59 linuxbox kernel: sdb: sdb1
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Attached SCSI
removable disk

190

Mounting and Unmounting Storage Devices

This tells us the device name is /dev/sdb for the entire device and /dev/sdb1 for
the first partition on the device. As we have seen, working with Linux is full of interest-
ing detective work!

Tip: Using the tail -f /var/log/messages technique is a great way to
watch what the system is doing in near real-time.

With our device name in hand, we can now mount the flash drive.

[me@linuxbox ~]$ sudo mkdir /mnt/flash
[me@linuxbox ~]$ sudo mount /dev/sdb1 /mnt/flash
[me@linuxbox ~]$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 15115452 5186944 9775164 35% /
/dev/sda5 59631908 31777376 24776480 57% /home
/dev/sda1 147764 17277 122858 13% /boot
tmpfs 776808 0 776808 0% /dev/shm
/dev/sdb1 15560 0 15560 0% /mnt/flash

The device name will remain the same as long as it remains physically attached to the
computer and the computer is not rebooted.

Creating New File Systems

Let's say that we want to reformat the flash drive with a Linux native file system, rather
than the FAT32 system it has now. This involves two steps.

1. (optional) Create a new partition layout if the existing one is not to our liking.

2. Create a new, empty file system on the drive.

Warning! In the following exercise, we are going to format a flash drive. Use a
drive that contains nothing you care about because it will be erased! Again,
make absolutely sure you are specifying the correct device name for your
system, not the one shown in the text. Failure to heed this warning could re-
sult in you formatting (i.e., erasing) the wrong drive!

191

15 – Storage Media

Manipulating Partitions with fdisk

fdisk is one of a host of programs (both command line and graphical) that allow us to
interact directly with disk-like devices (such as hard disk drives and flash drives) at a
very low level. With this tool we can edit, delete, and create partitions on the device. To
work with our flash drive, we must first unmount it (if needed) and then invoke the
fdisk program as follows:

[me@linuxbox ~]$ sudo umount /dev/sdb1
[me@linuxbox ~]$ sudo fdisk /dev/sdb

Notice that we must specify the device in terms of the entire device, not by partition num-
ber. After the program starts up, we will see the following prompt:

Command (m for help):

Entering an “m” will display the program menu.

Command action
 a toggle a bootable flag
 b edit bsd disklabel
 c toggle the dos compatibility flag
 d delete a partition
 l list known partition types
 m print this menu
 n add a new partition
 o create a new empty DOS partition table
 p print the partition table
 q quit without saving changes
 s create a new empty Sun disklabel
 t change a partition's system id
 u change display/entry units
 v verify the partition table
 w write table to disk and exit
 x extra functionality (experts only)

Command (m for help):

The first thing we want to do is examine the existing partition layout. We do this by en-

192

Creating New File Systems

tering “p” to print the partition table for the device.

Command (m for help): p

Disk /dev/sdb: 16 MB, 16006656 bytes
1 heads, 31 sectors/track, 1008 cylinders
Units = cylinders of 31 * 512 = 15872 bytes

 Device Boot Start End Blocks Id System
/dev/sdb1 2 1008 15608+ b W95 FAT32

In this example, we see a 16 MB device with a single partition (1) that uses 1,006 of the
available 1,008 cylinders on the device. The partition is identified as a Windows 95
FAT32 partition. Some programs will use this identifier to limit the kinds of operations
that can be done to the disk, but most of the time it is not critical to change it. However,
in the interest of this demonstration, we will change it to indicate a Linux partition. To do
this, we must first find out what ID is used to identify a Linux partition. In the previous
listing, we see that the ID b is used to specify the existing partition. To see a list of the
available partition types, we refer to the program menu. There we can see the following
choice:

 l list known partition types

If we enter l at the prompt, a large list of possible types is displayed. Among them we
see b for our existing partition type and 83 for Linux.

Going back to the menu, we see this choice to change a partition ID:

 t change a partition's system id

We enter t at the prompt and enter the new ID:

Command (m for help): t
Selected partition 1
Hex code (type L to list codes): 83
Changed system type of partition 1 to 83 (Linux)

This completes all the changes we need to make. Up to this point, the device has been un-
touched (all the changes have been stored in memory, not on the physical device), so we

193

15 – Storage Media

will write the modified partition table to the device and exit. To do this, we enter w at the
prompt.

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.
Syncing disks.
[me@linuxbox ~]$

If we had decided to leave the device unaltered, we could have entered q at the prompt,
which would have exited the program without writing the changes. We can safely ignore
the ominous-sounding warning message.

Creating a New File System with mkfs

With our partition editing done (lightweight though it might have been), it’s time to create
a new file system on our flash drive. To do this, we will use mkfs (short for “make file
system”), which can create file systems in a variety of formats. To create an ext4 file sys-
tem on the device, we use the -t option to specify the ext4”system type, followed by
the name of the device containing the partition we want to format.

[me@linuxbox ~]$ sudo mkfs -t ext4 /dev/sdb1
mke2fs 2.23.2 (12-Jul-2011)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
3904 inodes, 15608 blocks
780 blocks (5.00%) reserved for the super user
First data block=1
Maximum filesystem blocks=15990784
2 block groups
8192 blocks per group, 8192 fragments per group
1952 inodes per group
Superblock backups stored on blocks:

8193

194

Creating New File Systems

Writing inode tables: done
Creating journal (1024 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 34 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
[me@linuxbox ~]$

The program will display a lot of information when ext4 is the chosen file system type.
To reformat the device to its original FAT32 file system, specify vfat as the file system
type.

[me@linuxbox ~]$ sudo mkfs -t vfat /dev/sdb1

This process of partitioning and formatting can be used anytime additional storage de-
vices are added to the system. While we worked with a tiny flash drive, the same process
can be applied to internal hard disks and other removable storage devices like USB hard
drives.

Testing and Repairing File Systems

In our earlier discussion of the /etc/fstab file, we saw some mysterious digits at the
end of each line. Each time the system boots, it routinely checks the integrity of the file
systems before mounting them. This is done by the fsck program (short for “file system
check”). The last number in each fstab entry specifies the order in which the devices
are to be checked. In our previous example, we see that the root file system is checked
first, followed by the home and boot file systems. Devices with a zero as the last digit
are not routinely checked.

In addition to checking the integrity of file systems, fsck can also repair corrupt file sys-
tems with varying degrees of success, depending on the amount of damage. On Unix-like
file systems, recovered portions of files are placed in the lost+found directory, lo-
cated in the root of each file system.

To check our flash drive (which should be unmounted first), we could do the following:

[me@linuxbox ~]$ sudo fsck /dev/sdb1
fsck 1.40.8 (13-Mar-2016)
e2fsck 1.40.8 (13-Mar-2016)

195

15 – Storage Media

/dev/sdb1: clean, 11/3904 files, 1661/15608 blocks

These days, file system corruption is quite rare unless there is a hardware problem, such
as a failing disk drive. On most systems, file system corruption detected at boot time will
cause the system to stop and direct you to run fsck before continuing.

What the fsck?

In Unix culture, the word fsck is often used in place of a popular word with which
it shares three letters. This is especially appropriate, given that you will probably
be uttering the aforementioned word if you find yourself in a situation where you
are forced to run fsck.

Moving Data Directly to and from Devices

While we usually think of data on our computers as being organized into files, it is also
possible to think of the data in “raw” form. If we look at a disk drive, for example, we see
that it consists of a large number of “blocks” of data that the operating system sees as di-
rectories and files. However, if we could treat a disk drive as simply a large collection of
data blocks, we could perform useful tasks, such as cloning devices.

The dd program performs this task. It copies blocks of data from one place to another. It
uses a unique syntax (for historical reasons) and is usually used this way:

dd if=input_file of=output_file [bs=block_size [count=blocks]]

Warning! The dd command is very powerful. Though its name derives from
“data definition,” it is sometimes called “destroy disk” because users often
mistype either the if or of specification. Always double-check your input
and output specifications before pressing enter!

Let’s say we had two USB flash drives of the same size and we wanted to exactly copy
the first drive to the second. If we attached both drives to the computer and they are as -
signed to devices /dev/sdb and /dev/sdc respectively, we could copy everything on
the first drive to the second drive with the following:

196

Moving Data Directly to and from Devices

dd if=/dev/sdb of=/dev/sdc

Alternately, if only the first device were attached to the computer, we could copy its con-
tents to an ordinary file for later restoration or copying.

dd if=/dev/sdb of=flash_drive.img

Creating CD-ROM Images

Writing a recordable CD-ROM (either a CD-R or CD-RW) consists of two steps.

1. Constructing an iso image file that is the exact file system image of the CD-ROM

2. Writing the image file onto the CD-ROM media

Creating an Image Copy of a CD-ROM

If we want to make an ISO image of an existing CD-ROM, we can use dd to read all the
data blocks off the CD-ROM and copy them to a local file. Say we had an Ubuntu CD
and we wanted to make an ISO file that we could later use to make more copies. After in-
serting the CD and determining its device name (we’ll assume /dev/cdrom), we can
make the ISO file like so:

dd if=/dev/cdrom of=ubuntu.iso

This technique works for data DVDs as well but will not work for audio CDs, as they do
not use a file system for storage. For audio CDs, look at the cdrdao command.

Creating an Image From a Collection of Files

To create an ISO image file containing the contents of a directory, we use the
genisoimage program. To do this, we first create a directory containing all the files
we want to include in the image, and then execute the genisoimage command to cre-
ate the image file. For example, if we had created a directory called ~/cd-rom-files
and filled it with files for our CD-ROM, we could create an image file named cd-
rom.iso with the following command:

genisoimage -o cd-rom.iso -R -J ~/cd-rom-files

197

15 – Storage Media

The -R option adds metadata for the Rock Ridge extensions, which allows the use of long
filenames and POSIX-style file permissions. Likewise, the -J option enables the Joliet
extensions, which permit long filenames for Windows.

A Program by Any Other Name...

If you look at online tutorials for creating and burning optical media like CD-
ROMs and DVDs, you will frequently encounter two programs called mkisofs
and cdrecord. These programs were part of a popular package called cdr-
tools authored by Jörg Schilling. In the summer of 2006, Mr. Schilling made a
license change to a portion of the cdrtools package, which, in the opinion of
many in the Linux community, created a license incompatibility with the GNU
GPL. As a result, a fork of the cdrtools project was started that now includes re-
placement programs for cdrecord and mkisofs named wodim and
genisoimage, respectively.

Writing CD-ROM Images

After we have an image file, we can burn it onto our optical media. Most of the com-
mands we will discuss below can be applied to both recordable CD-ROM and DVD me-
dia.

Mounting an ISO Image Directly

There is a trick that we can use to mount an ISO image while it is still on our hard disk
and treat it as though it were already on optical media. By adding the “-o loop” option to
mount (along with the required “-t iso9660” file system type), we can mount the image
file as though it were a device and attach it to the file system tree.

mkdir /mnt/iso_image
mount -t iso9660 -o loop image.iso /mnt/iso_image

In the example above, we created a mount point named /mnt/iso_image and then
mounted the image file image.iso at that mount point. After the image is mounted, it
can be treated just as though it were a real CD-ROM or DVD. Remember to unmount the
image when it is no longer needed.

198

Writing CD-ROM Images

Blanking a Rewritable CD-ROM

Rewritable CD-RW media needs to be erased or blanked before it can be reused. To do
this, we can use wodim, specifying the device name for the CD writer and the type of
blanking to be performed. The wodim program offers several types. The most minimal
(and fastest) is the “fast” type.

wodim dev=/dev/cdrw blank=fast

Writing an Image

To write an image, we again use wodim, specifying the name of the optical media writer
device and the name of the image file.

wodim dev=/dev/cdrw image.iso

In addition to the device name and image file, wodim supports a large set of options.
Two common ones are “-v” for verbose output, and “-dao”, which writes the disc in disc-
at-once mode. This mode should be used if you are preparing a disc for commercial re-
production. The default mode for wodim is track-at-once, which is useful for recording
music tracks.

Summing Up

In this chapter we looked at the basic storage management tasks. There are, of course,
many more. Linux supports a vast array of storage devices and file system schemes. It
also offers many features for interoperability with other systems.

Further Reading

Take a look at the man pages of the commands we have covered. Some of them support
huge numbers of options and operations. Also, look for on-line tutorials for adding hard
drives to your Linux system (there are many) and working with optical media.

Extra Credit

It’s often useful to verify the integrity of an ISO image that we have downloaded. In most
cases, a distributor of an ISO image will also supply a checksum file. A checksum is the
result of an exotic mathematical calculation resulting in a number that represents the con-
tent of the target file. If the contents of the file change by even one bit, the resulting

199

15 – Storage Media

checksum will be much different. The most common method of checksum generation
uses the md5sum program. When you use md5sum, it produces a unique hexadecimal
number.

md5sum image.iso
34e354760f9bb7fbf85c96f6a3f94ece image.iso

After you download an image, you should run md5sum against it and compare the results
with the md5sum value supplied by the publisher.

In addition to checking the integrity of a downloaded file, we can use md5sum to verify
newly written optical media. To do this, we first calculate the checksum of the image file
and then calculate a checksum for the media. The trick to verifying the media is to limit
the calculation to only the portion of the optical media that contains the image. We do this
by determining the number of 2,048-byte blocks the image contains (optical media is al-
ways written in 2,048-byte blocks) and reading that many blocks from the media. On
some types of media, this is not required. CD-R and CD-RW disks are written in disc-at-
once mode can be checked this way.

md5sum /dev/cdrom
34e354760f9bb7fbf85c96f6a3f94ece /dev/cdrom

Many types of media, such as DVDs, require a precise calculation of the number of
blocks. In the example below, we check the integrity of the image file dvd-image.iso
and the disc in the DVD reader /dev/dvd. Can you figure out how this works?

md5sum dvd-image.iso; dd if=/dev/dvd bs=2048 count=$(($(stat -c "%s"
dvd-image.iso) / 2048)) | md5sum

200

