13 — Customizing the Prompt

13 - Customizing the Prompt

In this chapter, we will look at a seemingly trivial detail—our shell prompt. This exami-
nation will reveal some of the inner workings of the shell and the terminal emulator pro-
gram.

Like so many things in Linux, the shell prompt is highly configurable, and while we have
pretty much taken it for granted, the prompt is a really useful device once we learn how
to control it.

Anatomy of a Prompt
Our default prompt looks something like this:

[me@linuxbox ~1$

Notice that it contains our username, our hostname, and our current working directory,
but how did it get that way? Very simply, it turns out. The prompt is defined by an envi-
ronment variable named PS1 (short for “prompt string 1”). We can view the contents of
PS1 with the echo command.

[me@linuxbox ~]$ echo $PS1
[\u@\h \W]\$

Note: Don't worry if your results are not the same as the example above. Every
Linux distribution defines the prompt string a little differently, some quite exoti-
cally.

From the results, we can see that PS1 contains a few of the characters we see in our
prompt such as the brackets, the at-sign, and the dollar sign, but the rest are a mystery.
The astute among us will recognize these as backslash-escaped special characters like
those we saw in Chapter 7, “Seeing the World as the Shell Sees It.” Table 13-1 provides a

162

Anatomy of a Prompt

partial list of the characters that the bash treats specially in the prompt string.

Table 13-1: Escape Codes Used in Shell Prompts

Sequence
\a

\d

\h
\H
\J

\1
\n
\r
\s
\t
\T
\@
\A
\u
\v
\V
\w
\W
\!

\#
\$

N

Value Displayed
ASCII bell. This makes the computer beep when it is encountered.

Current date in day, month, date format. For example, “Mon May
26.”

Hostname of the local machine minus the trailing domain name.
Full hostname.

Number of jobs running in the current shell session.
Name of the current terminal device.

A newline character.

A carriage return.

Name of the shell program.

Current time in 24-hour hours:minutes:seconds format.
Current time in 12-hour format.

Current time in 12-hour AM/PM format.

Current time in 24-hour hours:minutes format.
Username of the current user.

Version number of the shell.

Version and release numbers of the shell.

Name of the current working directory.

Last part of the current working directory name.
History number of the current command.

Number of commands entered during this shell session.

This displays a “$” character unless we have superuser privileges.
In that case, it displays a “#” instead.

Signals the start of a series of one or more non-printing characters.
This is used to embed non-printing control characters that
manipulate the terminal emulator in some way, such as moving the
cursor or changing text colors.

163

13 — Customizing the Prompt

\] Signals the end of a non-printing character sequence.

Trying Some Alternative Prompt Designs

With this list of special characters, we can change the prompt to see the effect. First, we'll
back up the existing prompt string so we can restore it later. To do this, we will copy the
existing string into another shell variable that we create ourselves.

[me@linuxbox ~]$ psl1_old="$PS1"

We create a new variable called ps1_o01ld and assign the value of PS1 to it. We can ver-
ify that the string has been copied by using the echo command.

[me@linuxbox ~]$ echo $psi_old
[\u@\h \W]\$

We can restore the original prompt at any time during our terminal session by simply re-
versing the process.

[me@linuxbox ~]$ PS1="$ps1i old"

Now that we are ready to proceed, let's see what happens if we have an empty prompt
string.

[me@linuxbox ~]$ PS1=

If we assign nothing to the prompt string, we get nothing. No prompt string at all! The
prompt is still there, but displays nothing, just as we asked it to do. Since this is kind of
disconcerting to look at, we'll replace it with a minimal prompt.

PS1="\$ "

That's better. At least now we can see what we are doing. Notice the trailing space within
the double quotes. This provides the space between the dollar sign and the cursor when
the prompt is displayed.

Let's add a bell to our prompt.

164

Trying Some Alternative Prompt Designs

$ PS1="\[\a\]\$ "

Now we should hear a beep each time the prompt is displayed, though some systems dis-
able this “feature.” This could get annoying, but it might be useful if we needed notifica-
tion when an especially long-running command has been executed. Note that we included
the \[and \] sequences. Since the ASCII bell (\a) does not “print,” that is, it does not
move the cursor, we need to tell bash so it can correctly determine the length of the
prompt.

Next, let's try to make an informative prompt with some hostname and time-of-day infor-
mation.

$ PS1="\A \h \$ "
17:33 linuxbox $

Adding time-of-day to our prompt will be useful if we need to keep track of when we
perform certain tasks. Finally, we'll make a new prompt that is similar to our original.

17:37 linuxbox $ PS1="<\u@\h \W>\$ "
<me@linuxbox ~>$

Try the other sequences listed in the table above and see whether you can come up with a
brilliant new prompt.

Adding Color

Most terminal emulator programs respond to certain non-printing character sequences to
control such things as character attributes (such as color, bold text, and the dreaded blink-
ing text) and cursor position. We'll cover cursor position in a little bit, but first we'll look
at color.

Terminal Confusion

Back in ancient times, when terminals were hooked to remote computers, there
were many competing brands of terminals and they all worked differently. They
had different keyboards, and they all had different ways of interpreting control in-
formation. Unix and Unix-like systems have two rather complex subsystems to

165

13 — Customizing the Prompt

deal with the babel of terminal control (called termcap and terminfo). If you
look in the deepest recesses of your terminal emulator settings, you may find a
setting for the type of terminal emulation.

In an effort to make terminals speak some sort of common language, the Ameri-
can National Standards Institute (ANSI) developed a standard set of character se-
quences to control video terminals. Old-time DOS users will remember the AN -
SI.SYS file that was used to enable interpretation of these codes.

Character color is controlled by sending the terminal emulator an ANSI escape code em-
bedded in the stream of characters to be displayed. The control code does not “print out”
on the display; rather, it is interpreted by the terminal as an instruction. As we saw in the
table above, the \ [and \] sequences are used to encapsulate non-printing characters. An
ANSI escape code begins with an octal 033 (the code generated by the Esc key), fol-
lowed by an optional character attribute, followed by an instruction. For example, the
code to set the text color to normal (attribute = 0), black text is as follows:

\033[0;30m

Table 13-2 lists the available text colors. Notice that the colors are divided into two
groups, differentiated by the application of the bold character attribute (1), which creates
the appearance of “light” colors.

Table 13- 2: Escape Sequences Used to Set Text Colors

Sequence Text Color Sequence Text Color
\033[0;30m Black \033[1;306m Dark gray
\033[0;31m Red \033[1;31m Light red
\033[0;32m Green \033[1;32m Light green
\033[0;33m Brown \033[1;33m Yellow
\033[0; 34m Blue \033[1;34m Light blue
\033[0;35m Purple \033[1;35m Light purple
\033[0;36m Cyan \033[1;36m Light cyan
\033[0;37m Light gray \O33[1;37m White

Let's try to make a red prompt. We'll insert the escape code at the beginning.

166

Adding Color

<me@linuxbox ~>$ PS1="\[\033[0;31m\]<\u@\h \wW>\$ "
<me@linuxbox ~>$

That works, but notice that all the text that we type after the prompt will also display in
red. To fix this, we will add another escape code to the end of the prompt that tells the ter-
minal emulator to return to the previous color.

<me@linuxbox ~>$ PS1="\[\033[0;31m\]<\u@\h \W>\$\[\033[Oom\] "
<me@linuxbox ~>$

That's better!

It's also possible to set the text background color using the codes listed Table 13-3. The
background colors do not support the bold attribute.

Table 13-3: Escape Sequences Used to Set Background Color

Sequence Background Color Sequence Background Color
\033[0;40m Black \033[0;44m Blue

\033[0;41m Red \033[0;45m Purple
\033[0;42m Green \033[0;46m Cyan

\033[0;43m Brown \033[0;47m Light gray

We can create a prompt with a red background by applying a simple change to the first
escape code.

<me@linuxbox ~>$ PS1="\[\033[0;41m\]<\u@\h \W>\$\[\033[O6m\] "

Try the color codes and see what you can create!

Note: Besides the normal (0) and bold (1) character attributes, text may be given
underscore (4), blinking (5), and inverse (7) attributes. In the interests of good
taste, many terminal emulators refuse to honor the blinking attribute, however.

167

13 — Customizing the Prompt

Moving the Cursor

Escape codes can be used to position the cursor. This is commonly used to provide a
clock or some other kind of information at a different location on the screen, such as in an
upper corner each time the prompt is drawn. Table 13-4 lists the escape codes that posi-
tion the cursor.

Table 13-4: Cursor Movement Escape Sequences

Escape Code Action

\033[1;cH Move the cursor to line I and column ¢

\033[nA Move the cursor up n lines

\033[nB Move the cursor down n lines

\0@33[nC Move the cursor forward n characters

\033[nD Move the cursor backward n characters

\033[2J Clear the screen and move the cursor to the upper-left corner (line
0, column 0)

\033[K Clear from the cursor position to the end of the current line

\033[s Store the current cursor position

\033[u Recall the stored cursor position

Using the codes in Table 13-4, we'll construct a prompt that draws a red bar at the top of
the screen containing a clock (rendered in yellow text) each time the prompt is displayed.
The code for the prompt is this formidable-looking string:

PS1="\[\033[s\033[0;0H\033[0; 41m\033[K\033[1;33m\t\033[0m\033[u\]
<\u@\h \W>\$ "

Table 13-5 outlines what each part of the string does.

Table 13-5: Breakdown of Complex Prompt String

Sequence Action

\[Begin a non-printing character sequence. The purpose of this is
to allow bash to properly calculate the size of the visible
prompt. Without an accurate calculation, command line editing
features cannot position the cursor correctly.

168

Moving the Cursor

\033[s

\033[0;0H

\033[0;41m
\033[K

\033[1;33m
\t

\033[6m
\033[u

\]

<\u@\h \W>\$

Store the cursor position. This is needed to return to the prompt
location after the bar and clock have been drawn at the top of
the screen. Be aware that some terminal emulators do not
recognize this code.

Move the cursor to the upper-left corner, which is line 0,
column 0.

Set the background color to red.

Clear from the current cursor location (the top-left corner) to
the end of the line. Since the background color is now red, the
line is cleared to that color, creating our bar. Note that clearing
to the end of the line does not change the cursor position, which
remains in the upper-left corner.

Set the text color to yellow.

Display the current time. While this is a “printing” element, we
still include it in the non-printing portion of the prompt since
we don't want bash to include the clock when calculating the
true size of the displayed prompt.

Turn off color. This affects both the text and the background.
Restore the cursor position saved earlier.
End the non-printing characters sequence.

Prompt string.

Saving the Prompt

Obviously, we don't want to be typing that monster all the time, so we'll want to store our
prompt someplace. We can make the prompt permanent by adding it to our .bashrc
file. To do so, add these two lines to the file:

PS1="\[\033[s\033[0; 0H\033[0;41m\033[K\033[1;33m\t\033[0m\033[u\]

<\u@\h \W>\$ "

export PS1

Summing Up

Believe it or not, there is much more that can be done with prompts involving shell func-

169

13 — Customizing the Prompt

tions and scripts that we haven't covered here, but this is a good start. Not everyone will
care enough to change the prompt, since the default prompt is usually satisfactory. But for
those of us who like to tinker, the shell provides the opportunity for many hours of casual

fun.

Further Reading

e The Bash Prompt HOWTO from the Linux Documentation Project provides a
pretty complete discussion of what the shell prompt can be made to do. It is avail-

able at:
http://tldp.org/HOWTO/Bash-Prompt-HOWTO/

e Wikipedia has a good article on the ANSI Escape Codes:
http://en.wikipedia.org/wiki/ANSI escape code

170

http://en.wikipedia.org/wiki/ANSI_escape_code
http://tldp.org/HOWTO/Bash-Prompt-HOWTO/
http://tldp.org/

