10 — Processes

10 - Processes

Modern operating systems are usually multitasking, meaning they create the illusion of
doing more than one thing at once by rapidly switching from one executing program to
another. The Linux kernel manages this through the use of processes. Processes are how
Linux organizes the different programs waiting for their turn at the CPU.

Sometimes a computer will become sluggish or an application will stop responding. In
this chapter, we will look at some of the tools available at the command line that let us
examine what programs are doing and how to terminate processes that are misbehaving.

This chapter will introduce the following commands:
e s — Report a snapshot of current processes
e top — Display tasks
e jobs — List active jobs
e bg - Place a job in the background
e g —Place a job in the foreground
e kill —Send a signal to a process
e killall —Kill processes by name

e shutdown — Shutdown or reboot the system

How a Process Works

When a system starts up, the kernel initiates a few of its own activities as processes and
launches a program called init. init, in turn, runs a series of shell scripts (located in
/etc) called init scripts, which start all the system services. Many of these services are
implemented as daemon programs, programs that just sit in the background and do their
thing without having any user interface. So, even if we are not logged in, the system is at
least a little busy performing routine stuff.

The fact that a program can launch other programs is expressed in the process scheme as
a parent process producing a child process.

110



How a Process Works

The kernel maintains information about each process to help keep things organized. For
example, each process is assigned a number called a process ID (PID). PIDs are assigned
in ascending order, with init always getting PID 1. The kernel also keeps track of the
memory assigned to each process, as well as the processes' readiness to resume execu-
tion. Like files, processes also have owners and user IDs, effective user IDs, etc.

Viewing Processes

The most commonly used command to view processes (there are several) is ps. The ps
program has a lot of options, but in its simplest form it is used like this:

[me@linuxbox ~]1$ ps

PID TTY TIME CMD
5198 pts/1 00:00:00 bash
10129 pts/1 00:00:00 ps

The result in this example lists two processes, process 5198 and process 10129, which are
bash and ps respectively. As we can see, by default, ps doesn't show us very much, just
the processes associated with the current terminal session. To see more, we need to add
some options, but before we do that, let's look at the other fields produced by ps. TTY is
short for “teletype,” and refers to the controlling terminal for the process. Unix is show-
ing its age here. The TIME field is the amount of CPU time consumed by the process. As
we can see, neither process makes the computer work very hard.

If we add an option, we can get a bigger picture of what the system is doing.

[me@linuxbox ~]$ ps x
PID TTY STAT TIME COMMAND

2799 ? Ssl 0:00 /usr/libexec/bonobo-activation-server -ac
2820 ? Sl 0:01 /usr/libexec/evolution-data-server-1.10 --
15647 ? Ss 0:00 /bin/sh /usr/bin/startkde

15751 ? Ss 0:00 /usr/bin/ssh-agent /usr/bin/dbus-launch --
15754 ? S 0:00 /usr/bin/dbus-launch --exit-with-session
15755 ? Ss 0:01 /bin/dbus-daemon --fork --print-pid 4 -pr
15774 ? Ss 0:02 /usr/bin/gpg-agent -s -daemon

15793 ? S 0:00 start_kdeinit --new-startup +kcminit_start
15794 ? Ss 0:00 kdeinit Running...

15797 ? S 0:00 dcopserver -nosid

and many more...

Adding the “x” option (note that there is no leading dash) tells ps to show all of our pro-

111



10 — Processes

cesses regardless of what terminal (if any) they are controlled by. The presence of a “?” in
the TTY column indicates no controlling terminal. Using this option, we see a list of ev-
ery process that we own.

Since the system is running a lot of processes, ps produces a long list. It is often helpful
to pipe the output from ps into less for easier viewing. Some option combinations also
produce long lines of output, so maximizing the terminal emulator window may be a
good idea, too.

A new column titled STAT has been added to the output. STAT is short for “state” and re-
veals the current status of the process, as shown in Table 10-1.

Table 10-1: Process States
State Meaning
R Running. This means that the process is running or ready to run.

Sleeping. The process is not running; rather, it is waiting for an
event, such as a keystroke or network packet.

D Uninterruptible sleep. The process is waiting for I/O such as a disk
drive.
T Stopped. The process has been instructed to stop. More on this later

in the chapter.

Z A defunct or “zombie” process. This is a child process that has
terminated but has not been cleaned up by its parent.

< A high-priority process. It's possible to grant more importance to a
process, giving it more time on the CPU. This property of a process
is called niceness. A process with high priority is said to be less nice
because it's taking more of the CPU's time, which leaves less for
everybody else.

N A low-priority process. A process with low priority (a “nice”
process) will get processor time only after other processes with
higher priority have been serviced.

The process state may be followed by other characters. These indicate various exotic
process characteristics. See the pS man page for more detail.

Another popular set of options is “aux” (without a leading dash). This gives us even more
information.

112



Viewing Processes

USER PID %CPU %ME
root 1 0.0 0.
root 2 0.0 0.
root 3 0.0 0.
root 4 0.0 0

root 5 0.0 0.
root 6 0.0 0.
root 7 0.0 0.

and many more...

0
(0]
0
.0
(0]
(C]
(0]

[me@linuxbox ~]$ ps aux

M

VSzZ
2136

[cl oo oNoNO])

RSS
644

[cl oo oNoNO])
NN ) N) N ) N

TTY

STAT START
Ss Maro5
S< Maro5
S< Maro5
S< Maro5
S< Maro5
S< Maro5
S< Maro5

TIME

[l olNoNolNoMNoNOo)

:31
100
100
100
106
:36
100

COMMAND
init
[kt]
[mi]
[ks]
[wa]
[ev]
[kh]

This set of options displays the processes belonging to every user. Using the options
without the leading dash invokes the command with “BSD style” behavior. The Linux
version of pS can emulate the behavior of the ps program found in several different
Unix implementations. With these options, we get the additional columns shown in Table

10-2.

Table 10-2: BSD Style ps Column Headers

Header Meaning

USER User ID. This is the owner of the process.

%CPU CPU usage in percent.

%MEM Memory usage in percent.

VSZ Virtual memory size.

RSS Resident set size. This is the amount of physical memory (RAM)
the process is using in kilobytes.

START Time when the process started. For values over 24 hours, a date is

used.

Viewing Processes Dynamically with top

While the ps command can reveal a lot about what the machine is doing, it provides only
a snapshot of the machine's state at the moment the ps command is executed. To see a
more dynamic view of the machine's activity, we use the top command:

[me@linuxbox ~]$ top

113



10 — Processes

The top program displays a continuously updating (by default, every three seconds) dis-
play of the system processes listed in order of process activity. The name top comes from
the fact that the top program is used to see the “top” processes on the system. The top
display consists of two parts: a system summary at the top of the display, followed by a
table of processes sorted by CPU activity:

top - 14:59:20 up 6:30, 2 users, load average: 0.07, 0.02, 0.00
Tasks: 109 total, 1 running, 106 sleeping, 0 stopped, 2 zombie
Cpu(s): 0.7%us, 1.0%sy, 0.0%ni, 98.3%id, 0.0%wa, 0.0%hi, 0.0%si
Mem: 319496k total, 314860k used, 4636k free, 19392k buff
Swap: 875500k total, 149128k used, 726372k free, 114676k cach

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
6244 me 39 19 31752 3124 2188 S 6.3 1.0 16:24.42 trackerd
11071 me 20 0 2304 1092 840 R 1.3 0.3 0:00.14 top
6180 me 20 0 2700 1100 772 S 0.7 0.3 0:03.66 dbus-dae
6321 me 20 0 20944 7248 6560 S 0.7 2.3 2:51.38 multiloa
4955 root 20 0O 104m 9668 5776 S 0.3 3.0 2:19.39 Xorg
1 root 20 0 2976 528 476 S 0.0 0.2 0:03.14 init
2 root 15 -5 (0] (0] 0SS 0.0 0.0 0:00.00 kthreadd
3 root RT -5 0 0 S 0.0 0.0 0:00.00 migratio
4 root 15 -5 0 0 S 0.0 0.0 0:00.72 ksoftirg
5 root RT -5 0 0 S 0.0 0.0 0:00.04 watchdog
6 root 15 -5 0 0 0OS 0.0 0.0 0:00.42 events/0
7 root 15 -5 0 0 OS 0.0 0.0 0:00.06 khelper
41 root 15 -5 (0] (0] 0S 0.0 0.0 0:01.08 kblockd/
67 root 15 -5 0 0 0S 0.0 0.0 0:00.00 kseriod
114 root 20 (0] (0] (0] 0SS 0.0 0.0 0:01.62 pdflush
116 root 15 -5 0 0 0SS 0.0 0.0 0:02.44 kswapdo

The system summary contains a lot of good stuff. Here's a rundown:

Table 10-3: top Information Fields

Row Field Meaning
1 top The name of the program.
14:59:20 The current time of day.
up 6:30 This is called uptime. It is the amount of time

since the machine was last booted. In this
example, the system has been up for six-and-a-
half hours.

114



Viewing Processes

2 users

load average:

2 Tasks:

3 Cpu(s):

0.7%us

1.0%sy

0.0%ni

98.3%1id
0. 0%wa
4 Mem:
5 Swap:

There are two users logged in.

Load average refers to the number of processes
that are waiting to run, that is, the number of
processes that are in a runnable state and are
sharing the CPU. Three values are shown, each
for a different period of time. The first is the
average for the last 60 seconds, the next the
previous 5 minutes, and finally the previous 15
minutes. Values less than 1.0 indicate that the
machine is not busy.

This summarizes the number of processes and
their various process states.

This row describes the character of the
activities that the CPU is performing.

0.7 percent of the CPU is being used for user
processes. This means processes outside the
kernel.

1.0 percent of the CPU is being used for
system (kernel) processes.

0.0 percent of the CPU is being used by “nice”
(low-priority) processes.

98.3 percent of the CPU is idle.
0.0 percent of the CPU is waiting for I/O.
This shows how physical RAM is being used.

This shows how swap space (virtual memory)
is being used.

The top program accepts a number of keyboard commands. The two most interesting are
h, which displays the program's help screen, and q, which quits top.

Both major desktop environments provide graphical applications that display information
similar to top (in much the same way that Task Manager in Windows works), but top is
better than the graphical versions because it is faster and it consumes far fewer system re-
sources. After all, our system monitor program shouldn't be the source of the system

slowdown that we are trying to track.

115



10 — Processes

Controlling Processes

Now that we can see and monitor processes, let's gain some control over them. For our
experiments, we're going to use a little program called X10go0 as our guinea pig. The
x10go program is a sample program supplied with the X Window System (the underly-
ing engine that makes the graphics on our display go), which simply displays a re-sizable
window containing the X logo. First, we'll get to know our test subject.

[me@linuxbox ~]$ xlogo

After entering the command, a small window containing the logo should appear some-
where on the screen. On some systems, X10g0 may print a warning message, but it may

be safely ignored.

Tip: If your system does not include the Xx10go program, try using gedit or
kwrite instead.

We can verify that Xx10go0 is running by resizing its window. If the logo is redrawn in the
new size, the program is running.

Notice how our shell prompt has not returned? This is because the shell is waiting for the
program to finish, just like all the other programs we have used so far. If we close the
x1logo window, the prompt returns.

Figure 4: The xlogo program

Interrupting a Process

Let's observe what happens when we run x10go again. First, enter the Xx10g0o command

116



Controlling Processes

and verify that the program is running. Next, return to the terminal window and press
Ctrl-c.

[me@linuxbox ~]$ xlogo
[me@linuxbox ~]$%$

In a terminal, pressing Ctrl-c, interrupts a program. This means we are politely asking
the program to terminate. After we pressed Ctrl-c, the x10go window closed and the
shell prompt returned.

Many (but not all) command-line programs can be interrupted by using this technique.

Putting a Process in the Background

Let's say we wanted to get the shell prompt back without terminating the x1ogo pro-
gram. We can do this by placing the program in the background. Think of the terminal as
having a foreground (with stuff visible on the surface like the shell prompt) and a back-
ground (with stuff hidden behind the surface). To launch a program so that it is immedi-
ately placed in the background, we follow the command with an ampersand (&) charac-
ter.

[me@linuxbox ~]1$ xlogo &
[1] 28236
[me@linuxbox ~]$

After entering the command, the x10go window appeared and the shell prompt returned,
but some funny numbers were printed too. This message is part of a shell feature called
job control. With this message, the shell is telling us that we have started job number 1
([1]) and that it has PID 28236. If we run pS, we can see our process.

[me@linuxbox ~]$ ps

PID TTY TIME CMD
10603 pts/1 00:00:00 bash
28236 pts/1 00:00:00 xlogo
28239 pts/1 00:00:00 ps

The shell's job control facility also gives us a way to list the jobs that have been launched
from our terminal. Using the jobs command, we can see this list:

117



10 — Processes

[me@linuxbox ~]$ jobs
[1]+ Running xlogo &

The results show that we have one job, numbered 1, that it is running, and that the com-
mand was Xx1ogo &.

Returning a Process to the Foreground

A process in the background is immune from terminal keyboard input, including any at-
tempt to interrupt it with Ctrl-c. To return a process to the foreground, use the fg
command in this way:

[me@linuxbox ~]$ jobs

[1]+ Running xlogo &
[me@linuxbox ~]$ fg %1

xlogo

The fg command followed by a percent sign and the job number (called a jobspec) does
the trick. If we only have one background job, the jobspec is optional. To terminate X1 -
0go, press Ctrl-c.

Stopping (Pausing) a Process

Sometimes we'll want to stop a process without terminating it. This is often done to allow
a foreground process to be moved to the background. To stop a foreground process and
place it in the background, press Ctrl-z. Let's try it. At the command prompt, type X1 -
0go, press the Enter key, and then press Ctrl-z:

[me@linuxbox ~]$ xlogo
[1]+ Stopped xlogo
[me@linuxbox ~]$%$

After stopping x10go, we can verify that the program has stopped by attempting to re-
size the x10go window. We will see that it appears quite dead. We can either continue
the program's execution in the foreground, using the fg command, or resume the pro-
gram's execution in the background with the bg command:

[me@linuxbox ~]$ bg %1

118



Controlling Processes

[1]+ x1logo &
[me@linuxbox ~]$%$

As with the fg command, the jobspec is optional if there is only one job.

Moving a process from the foreground to the background is handy if we launch a graphi-
cal program from the command line, but forget to place it in the background by append-
ing the trailing &.

Why would we want to launch a graphical program from the command line? There are
two reasons.

The program we want to run might not be listed on the window manager's menus
(such as x10go).

By launching a program from the command line, we might be able to see error
messages that would otherwise be invisible if the program were launched graphi-
cally. Sometimes, a program will fail to start up when launched from the graphical
menu. By launching it from the command line instead, we may see an error mes-
sage that will reveal the problem. Also, some graphical programs have interesting
and useful command line options.

Signals

The kill command is used to “kill” processes. This allows us to terminate programs
that need killing (that is, some kind of pausing or termination). Here's an example:

[me@linuxbox ~]$ xlogo &

[1] 28401
[me@linuxbox ~]1$ kill 28401
[1]+ Terminated xlogo

We first launch x10go in the background. The shell prints the jobspec and the PID of the
background process. Next, we use the kill command and specify the PID of the process

we want to terminate. We could have also specified the process using a jobspec (for ex-
ample, %1) instead of a PID.

While this is all very straightforward, there is more to it than that. The kill command
doesn't exactly “kill” processes: rather it sends them signals. Signals are one of several
ways that the operating system communicates with programs. We have already seen sig-
nals in action with the use of Ctrl-c and Ctrl-z. When the terminal receives one of
these keystrokes, it sends a signal to the program in the foreground. In the case of Ctrl-
C, a signal called INT (interrupt) is sent; with Ctrl-z, a signal called TSTP (terminal

119



10 — Processes

stop) is sent. Programs, in turn, “listen” for signals and may act upon them as they are re-
ceived. The fact that a program can listen and act upon signals allows a program to do
things such as save work in progress when it is sent a termination signal.

Sending Signals to Processes with kill

The kill command is used to send signals to programs. Its most common syntax looks
like this:

kill [-signal] PID...

If no signal is specified on the command line, then the TERM (terminate) signal is sent by
default. The kill command is most often used to send the following signals:

Table 10-4: Common Signals

Number Name Meaning

1 HUP Hangup. This is a vestige of the good old days
when terminals were attached to remote
computers with phone lines and modems. The
signal is used to indicate to programs that the
controlling terminal has “hung up.” The effect of
this signal can be demonstrated by closing a
terminal session. The foreground program
running on the terminal will be sent the signal and
will terminate.

This signal is also used by many daemon
programs to cause a reinitialization. This means
that when a daemon is sent this signal, it will
restart and reread its configuration file. The
Apache web server is an example of a daemon
that uses the HUP signal in this way.

2 INT Interrupt. This performs the same function as a
Ctrl-c sent from the terminal. It will usually
terminate a program.

9 KILL Kill. This signal is special. Whereas programs
may choose to handle signals sent to them in
different ways, including ignoring them all
together, the KILL signal is never actually sent to

120



Signals

the target program. Rather, the kernel
immediately terminates the process. When a
process is terminated in this manner, it is given no
opportunity to “clean up” after itself or save its
work. For this reason, the KILL signal should be
used only as a last resort when other termination
signals fail.

15 TERM Terminate. This is the default signal sent by the
kill command. If a program is still “alive”
enough to receive signals, it will terminate.

18 CONT Continue. This will restore a process after a STOP
or TSTP signal. This signal is sent by the bg and
g commands.

19 STOP Stop. This signal causes a process to pause
without terminating. Like the KILL signal, it is
not sent to the target process, and thus it cannot be
ignored.

20 TSTP Terminal stop. This is the signal sent by the
terminal when Ctrl-z is pressed. Unlike the
STOP signal, the TSTP signal is received by the
program, but the program may choose to ignore it.

Let's try out the ki1l command:

[me@linuxbox ~]$ xlogo &

[1] 13546

[me@linuxbox ~]$ kill -1 13546

[1]+ Hangup xlogo

In this example, we start the Xx10go program in the background and then send it a HUP
signal with kill. The x10go program terminates, and the shell indicates that the back-
ground process has received a hangup signal. We may need to press the Enter key a
couple of times before the message appears. Note that signals may be specified either by
number or by name, including the name prefixed with the letters SIG.

[me@linuxbox ~]$ xlogo &

121



10 — Processes

[1] 13601

[me@linuxbox ~]$ kill -INT 13601
[1]+ Interrupt xlogo
[me@linuxbox ~]$ xlogo &

[1] 13608

[me@linuxbox ~]$ kill -SIGINT 13608
[1]+ Interrupt xlogo

Repeat the example above and try the other signals. Remember, we can also use jobspecs
in place of PIDs.

Processes, like files, have owners, and you must be the owner of a process (or the supe-
ruser) to send it signals with ki11.

In addition to the list of signals above, which are most often used with kill, there are
other signals frequently used by the system as listed in Table 10-5.

Table 10-5: Other Common Signals

Number Name Meaning
3 QUIT Quit.
11 SEGV Segmentation violation. This signal is sent if a

program makes illegal use of memory, that is, if it
tried to write somewhere it was not allowed to
write.

28 WINCH Window change. This is the signal sent by the
system when a window changes size. Some
programs , such as top and 1less will respond to
this signal by redrawing themselves to fit the new
window dimensions.

For the curious, a complete list of signals can be displayed with the following command:

[me@linuxbox ~]$ kill -1

Sending Signals to Multiple Processes with killall

It's also possible to send signals to multiple processes matching a specified program or
username by using the killall command. Here is the syntax:

122



Signals

killall [-u user] [-signal] name. ..

To demonstrate, we will start a couple of instances of the Xx10go program and then ter-
minate them.

[me@linuxbox ~]$ xlogo &

[1] 18801

[me@linuxbox ~]$ xlogo &

[2] 18802

[me@linuxbox ~]$ killall xlogo

[1]- Terminated xlogo
[2]+ Terminated xlogo

Remember, as with ki1l1, we must have superuser privileges to send signals to processes
that do not belong to us.

Shutting Down the System

The process of shutting down the system involves the orderly termination of all the pro-
cesses on the system, as well as performing some vital housekeeping chores (such as
syncing all of the mounted file systems) before the system powers off. There are four
commands that can perform this function. They are halt, poweroff, reboot, and
shutdown. The first three are pretty self-explanatory and are generally used without any
command line options. Here’s an example:

[me@linuxbox ~]$ sudo reboot

The shutdown command is a bit more interesting. With it, we can specify which of the
actions to perform (halt, power down, or reboot) and provide a time delay to the shut-
down event. Most often it is used like this to halt the system:

[me@linuxbox ~]$ sudo shutdown -h now

or like this to reboot the system:

[me@linuxbox ~]$ sudo shutdown -r now

123



10 — Processes

The delay can be specified in a variety of ways. See the shutdown man page for details.
Once the shutdown command is executed, a message is “broadcast” to all logged-in
users warning them of the impending event.

More Process-Related Commands
Since monitoring processes is an important system administration task, there are a lot of

commands for it. Table 10-6 lists some to play with:

Table 10-6: Other Process Related Commands

Command Description

pstree Outputs a process list arranged in a tree-like pattern showing the
parent-child relationships between processes.

vmstat Outputs a snapshot of system resource usage including, memory,
swap, and disk I/0O. To see a continuous display, follow the
command with a time delay (in seconds) for updates. Here’s an
example: vmstat 5. Terminate the output with Ctrl-c.

xload A graphical program that draws a graph showing system load over
time.
tload Similar to the x1oad program but draws the graph in the terminal.

Terminate the output with Ctrl-c.

Summing Up

Most modern systems feature a mechanism for managing multiple processes. Linux pro-
vides a rich set of tools for this purpose. Given that Linux is the world's most deployed
server operating system, this makes a lot of sense. However, unlike some other systems,
Linux relies primarily on command line tools for process management. Though there are
graphical process tools for Linux, the command line tools are greatly preferred because of
their speed and light footprint. While the GUI tools may look pretty, they often create a
lot of system load themselves, which somewhat defeats the purpose.

124






10 — Processes

126



