
6 – Redirection

6 – Redirection

In this lesson we are going to unleash what may be the coolest feature of the command
line. It's called I/O redirection. The “I/O” stands for input/output and with this facility we
can redirect the input and output of commands to and from files, as well as connect multi-
ple commands together into powerful command pipelines. To show off this facility, we
will introduce the following commands:

● cat – Concatenate files

● sort – Sort lines of text

● uniq – Report or omit repeated lines

● grep – Print lines matching a pattern

● wc – Print newline, word, and byte counts for each file

● head – Output the first part of a file

● tail – Output the last part of a file

● tee – Read from standard input and write to standard output and files

Standard Input, Output, and Error

Many of the programs that we have used so far produce output of some kind. This output
often consists of two types:

• The program's results, that is, the data the program is designed to produce

• Status and error messages that tell us how the program is getting along

If we look at a command like ls, we can see that it displays its results and its error mes-
sages on the screen.

Keeping with the Unix theme of “everything is a file,” programs such as ls actually send
their results to a special file called standard output (often expressed as stdout) and their
status messages to another file called standard error (stderr). By default, both standard
output and standard error are linked to the screen and not saved into a disk file.

54

Standard Input, Output, and Error

In addition, many programs take input from a facility called standard input (stdin), which
is, by default, attached to the keyboard.

I/O redirection allows us to change where output goes and where input comes from. Nor-
mally, output goes to the screen and input comes from the keyboard, but with I/O redi-
rection, we can change that.

Redirecting Standard Output

I/O redirection allows us to redefine where standard output goes. To redirect standard
output to another file instead of the screen, we use the > redirection operator followed by
the name of the file. Why would we want to do this? It's often useful to store the output of
a command in a file. For example, we could tell the shell to send the output of the ls
command to the file ls-output.txt instead of the screen:

[me@linuxbox ~]$ ls -l /usr/bin > ls-output.txt

Here, we created a long listing of the /usr/bin directory and sent the results to the file
ls-output.txt. Let's examine the redirected output of the command, shown here:

[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 167878 2018-02-01 15:07 ls-output.txt

Good — a nice, large, text file. If we look at the file with less, we will see that the file
ls-output.txt does indeed contain the results from our ls command.

[me@linuxbox ~]$ less ls-output.txt

Now, let's repeat our redirection test, but this time with a twist. We'll change the name of
the directory to one that does not exist:

[me@linuxbox ~]$ ls -l /bin/usr > ls-output.txt
ls: cannot access /bin/usr: No such file or directory

We received an error message. This makes sense since we specified the nonexistent direc-
tory /bin/usr, but why was the error message displayed on the screen rather than be-
ing redirected to the file ls-output.txt? The answer is that the ls program does not
send its error messages to standard output. Instead, like most well-written Unix programs,

55

6 – Redirection

it sends its error messages to standard error. Since we only redirected standard output and
not standard error, the error message was still sent to the screen. We'll see how to redirect
standard error in just a minute, but first let's look at what happened to our output file:

[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 0 2018-02-01 15:08 ls-output.txt

The file now has zero length! This is because when we redirect output with the “>” redi-
rection operator, the destination file is always rewritten from the beginning. Since our ls
command generated no results and only an error message, the redirection operation
started to rewrite the file and then stopped because of the error, resulting in its truncation.
In fact, if we ever need to actually truncate a file (or create a new, empty file), we can use
a trick like this:

[me@linuxbox ~]$ > ls-output.txt

Simply using the redirection operator with no command preceding it will truncate an ex-
isting file or create a new, empty file.

So, how can we append redirected output to a file instead of overwriting the file from the
beginning? For that, we use the >> redirection operator, like so:

[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt

Using the >> operator will result in the output being appended to the file. If the file does
not already exist, it is created just as though the > operator had been used. Let's put it to
the test:

[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 503634 2018-02-01 15:45 ls-output.txt

We repeated the command three times resulting in an output file three times as large.

56

Redirecting Standard Error

Redirecting Standard Error

Redirecting standard error lacks the ease of a dedicated redirection operator. To redirect
standard error we must refer to its file descriptor. A program can produce output on any
of several numbered file streams. While we have referred to the first three of these file
streams as standard input, output and error, the shell references them internally as file de-
scriptors 0, 1, and 2, respectively. The shell provides a notation for redirecting files using
the file descriptor number. Since standard error is the same as file descriptor number 2,
we can redirect standard error with this notation:

[me@linuxbox ~]$ ls -l /bin/usr 2> ls-error.txt

The file descriptor “2” is placed immediately before the redirection operator to perform
the redirection of standard error to the file ls-error.txt.

Redirecting Standard Output and Standard Error to One File

There are cases in which we may want to capture all of the output of a command to a sin-
gle file. To do this, we must redirect both standard output and standard error at the same
time. There are two ways to do this. Shown here is the traditional way, which works with
old versions of the shell:

[me@linuxbox ~]$ ls -l /bin/usr > ls-output.txt 2>&1

Using this method, we perform two redirections. First we redirect standard output to the
file ls-output.txt and then we redirect file descriptor 2 (standard error) to file de-
scriptor 1 (standard output) using the notation 2>&1.

Notice that the order of the redirections is significant. The redirection of stan-
dard error must always occur after redirecting standard output or it doesn't work.
The following example redirects standard error to the file ls-output.txt:

>ls-output.txt 2>&1

However, if the order is changed to the following, standard error is directed to
the screen.

 2>&1 >ls-output.txt

57

6 – Redirection

Recent versions of bash provide a second, more streamlined method for performing this
combined redirection shown here:

[me@linuxbox ~]$ ls -l /bin/usr &> ls-output.txt

In this example, we use the single notation &> to redirect both standard output and stan-
dard error to the file ls-output.txt. We can also append the standard output and
standard error streams to a single file like so:

[me@linuxbox ~]$ ls -l /bin/usr &>> ls-output.txt

Disposing of Unwanted Output

Sometimes “silence is golden,” and we don't want output from a command, we just want
to throw it away. This applies particularly to error and status messages. The system pro-
vides a way to do this by redirecting output to a special file called “/dev/null”. This file is
a system device often referred to as a bit bucket, which accepts input and does nothing
with it. To suppress error messages from a command, we do this:

[me@linuxbox ~]$ ls -l /bin/usr 2> /dev/null

/dev/null In Unix Culture

The bit bucket is an ancient Unix concept and because of its universality, it has
appeared in many parts of Unix culture. When someone says he/she is sending
your comments to /dev/null, now you know what it means. For more exam-
ples, see the Wikipedia article on / dev/null .

Redirecting Standard Input

Up to now, we haven't encountered any commands that make use of standard input (actu-
ally we have, but we’ll reveal that surprise a little bit later), so we need to introduce one.

58

http://en.wikipedia.org/wiki//dev/null
http://en.wikipedia.org/wiki//dev/null
http://en.wikipedia.org/wiki//dev/null

Redirecting Standard Input

cat – Concatenate Files

The cat command reads one or more files and copies them to standard output like so:

cat [file...]

In most cases, we can think of cat as being analogous to the TYPE command in DOS.
We can use it to display files without paging. For example, the following will display the
contents of the file ls-output.txt:

[me@linuxbox ~]$ cat ls-output.txt

cat is often used to display short text files. Since cat can accept more than one file as
an argument, it can also be used to join files together. Say we have downloaded a large
file that has been split into multiple parts (multimedia files are often split this way on
Usenet), and we want to join them back together. If the files were named:

movie.mpeg.001 movie.mpeg.002 ... movie.mpeg.099

we could join them back together with this command as follows:

cat movie.mpeg.0* > movie.mpeg

Since wildcards always expand in sorted order, the arguments will be arranged in the cor-
rect order.

This is all well and good, but what does this have to do with standard input? Nothing yet,
but let's try something else. What happens if we enter cat with no arguments?

[me@linuxbox ~]$ cat

Nothing happens, it just sits there like it's hung. It might seem that way, but it's really do-
ing exactly what it's supposed to do.

If cat is not given any arguments, it reads from standard input and since standard input
is, by default, attached to the keyboard, it's waiting for us to type something! Try adding
the following text and pressing Enter:

[me@linuxbox ~]$ cat

59

6 – Redirection

The quick brown fox jumped over the lazy dog.

Next, type a Ctrl-d (i.e., hold down the Ctrl key and press “d”) to tell cat that it has
reached end of file (EOF) on standard input:

[me@linuxbox ~]$ cat
The quick brown fox jumped over the lazy dog.
The quick brown fox jumped over the lazy dog.

In the absence of filename arguments, cat copies standard input to standard output, so
we see our line of text repeated. We can use this behavior to create short text files. Let's
say we wanted to create a file called lazy_dog.txt containing the text in our exam-
ple. We would do this:

[me@linuxbox ~]$ cat > lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Type the command followed by the text we want to place in the file. Remember to type
Ctrl-d at the end. Using the command line, we have implemented the world's dumbest
word processor! To see our results, we can use cat to copy the file to stdout again.

[me@linuxbox ~]$ cat lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Now that we know how cat accepts standard input, in addition to filename arguments,
let's try redirecting standard input.

[me@linuxbox ~]$ cat < lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Using the < redirection operator, we change the source of standard input from the key-
board to the file lazy_dog.txt. We see that the result is the same as passing a single
filename argument. This is not particularly useful compared to passing a filename argu-
ment, but it serves to demonstrate using a file as a source of standard input. Other com-
mands make better use of standard input, as we will soon see.

Before we move on, check out the man page for cat, because it has several interesting

60

Redirecting Standard Input

options.

Pipelines

The capability of commands to read data from standard input and send to standard output
is utilized by a shell feature called pipelines. Using the pipe operator | (vertical bar), the
standard output of one command can be piped into the standard input of another.

command1 | command2

To fully demonstrate this, we are going to need some commands. Remember how we said
there was one we already knew that accepts standard input? It's less. We can use less
to display, page by page, the output of any command that sends its results to standard out-
put:

[me@linuxbox ~]$ ls -l /usr/bin | less

This is extremely handy! Using this technique, we can conveniently examine the output
of any command that produces standard output.

The Difference Between > and |

At first glance, it may be hard to understand the redirection performed by the
pipeline operator | versus the redirection operator >. Simply put, the redirection
operator connects a command with a file, while the pipeline operator connects the
output of one command with the input of a second command.

command1 > file1

command1 | command2

A lot of people will try the following when they are learning about pipelines, “just
to see what happens”:

command1 > command2

Answer: sometimes something really bad.

61

6 – Redirection

Here is an actual example submitted by a reader who was administering a Linux-
based server appliance. As the superuser, he did this:

cd /usr/bin

ls > less

The first command put him in the directory where most programs are stored and
the second command told the shell to overwrite the file less with the output of
the ls command. Since the /usr/bin directory already contained a file named
less (the less program), the second command overwrote the less program
file with the text from ls, thus destroying the less program on his system.

The lesson here is that the redirection operator silently creates or overwrites files,
so you need to treat it with a lot of respect.

Filters

Pipelines are often used to perform complex operations on data. It is possible to put sev-
eral commands together into a pipeline. Frequently, the commands used this way are re-
ferred to as filters. Filters take input, change it somehow, and then output it. The first one
we will try is sort. Imagine we wanted to make a combined list of all the executable
programs in /bin and /usr/bin, put them in sorted order and view the resulting list:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | less

Since we specified two directories (/bin and /usr/bin), the output of ls would have
consisted of two sorted lists, one for each directory. By including sort in our pipeline,
we changed the data to produce a single, sorted list.

uniq - Report or Omit Repeated Lines

The uniq command is often used in conjunction with sort. uniq accepts a sorted list
of data from either standard input or a single filename argument (see the uniq man page
for details) and, by default, removes any duplicates from the list. So, to make sure our list
has no duplicates (that is, any programs of the same name that appear in both the /bin
and /usr/bin directories), we will add uniq to our pipeline.

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | less

62

Pipelines

In this example, we use uniq to remove any duplicates from the output of the sort
command. If we want to see the list of duplicates instead, we add the “-d” option to uniq
like so:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq -d | less

wc – Print Line, Word, and Byte Counts

The wc (word count) command is used to display the number of lines, words, and bytes
contained in files. Here's an example:

[me@linuxbox ~]$ wc ls-output.txt
 7902 64566 503634 ls-output.txt

In this case, it prints out three numbers: lines, words, and bytes contained in ls-out-
put.txt. Like our previous commands, if executed without command line arguments,
wc accepts standard input. The “-l” option limits its output to only report lines. Adding it
to a pipeline is a handy way to count things. To see the number of items we have in our
sorted list, we can do this:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | wc -l
2728

grep – Print Lines Matching a Pattern

grep is a powerful program used to find text patterns within files. It's used like this:

grep pattern [file...]

When grep encounters a “pattern” in the file, it prints out the lines containing it. The
patterns that grep can match can be very complex, but for now we will concentrate on
simple text matches. We'll cover the advanced patterns, called regular expressions in
Chapter 19.

Let's say we wanted to find all the files in our list of programs that had the word zip em-
bedded in the name. Such a search might give us an idea of some of the programs on our
system that had something to do with file compression. We would do this:

63

6 – Redirection

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | grep zip
bunzip2
bzip2
gunzip
gzip
unzip
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit

There are a couple of handy options for grep:

• -i, which causes grep to ignore case when performing the search (normally
searches are case sensitive)

• -v, which tells grep to print only those lines that do not match the pattern.

head / tail – Print First / Last Part of Files

Sometimes we don't want all the output from a command. We may only want the first few
lines or the last few lines. The head command prints the first ten lines of a file, and the
tail command prints the last ten lines. By default, both commands print ten lines of
text, but this can be adjusted with the -n option.

[me@linuxbox ~]$ head -n 5 ls-output.txt
total 343496
-rwxr-xr-x 1 root root 31316 2007-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2007-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2007-11-26 14:27 a2p
-rwxr-xr-x 1 root root 25368 2006-10-06 20:16 a52dec
[me@linuxbox ~]$ tail -n 5 ls-output.txt
-rwxr-xr-x 1 root root 5234 2007-06-27 10:56 znew
-rwxr-xr-x 1 root root 691 2005-09-10 04:21 zonetab2pot.py
-rw-r--r-- 1 root root 930 2007-11-01 12:23 zonetab2pot.pyc
-rw-r--r-- 1 root root 930 2007-11-01 12:23 zonetab2pot.pyo
lrwxrwxrwx 1 root root 6 2016-01-31 05:22 zsoelim -> soelim

These can be used in pipelines as well:

64

Pipelines

[me@linuxbox ~]$ ls /usr/bin | tail -n 5
znew
zonetab2pot.py
zonetab2pot.pyc
zonetab2pot.pyo
zsoelim

tail has an option which allows us to view files in real time. This is useful for watching
the progress of log files as they are being written. In the following example, we will look
at the messages file in /var/log (or the /var/log/syslog file if messages is
missing). Superuser privileges are required to do this on some Linux distributions, be-
cause the /var/log/messages file may contain security information:

[me@linuxbox ~]$ tail -f /var/log/messages
Feb 8 13:40:05 twin4 dhclient: DHCPACK from 192.168.1.1
Feb 8 13:40:05 twin4 dhclient: bound to 192.168.1.4 -- renewal in
1652 seconds.
Feb 8 13:55:32 twin4 mountd[3953]: /var/NFSv4/musicbox exported to
both 192.168.1.0/24 and twin7.localdomain in
192.168.1.0/24,twin7.localdomain
Feb 8 14:07:37 twin4 dhclient: DHCPREQUEST on eth0 to 192.168.1.1
port 67
Feb 8 14:07:37 twin4 dhclient: DHCPACK from 192.168.1.1
Feb 8 14:07:37 twin4 dhclient: bound to 192.168.1.4 -- renewal in
1771 seconds.
Feb 8 14:09:56 twin4 smartd[3468]: Device: /dev/hda, SMART
Prefailure Attribute: 8 Seek_Time_Performance changed from 237 to 236
Feb 8 14:10:37 twin4 mountd[3953]: /var/NFSv4/musicbox exported to
both 192.168.1.0/24 and twin7.localdomain in
192.168.1.0/24,twin7.localdomain
Feb 8 14:25:07 twin4 sshd(pam_unix)[29234]: session opened for user
me by (uid=0)
Feb 8 14:25:36 twin4 su(pam_unix)[29279]: session opened for user
root by me(uid=500)

Using the “-f” option, tail continues to monitor the file, and when new lines are ap-
pended, they immediately appear on the display. This continues until we press Ctrl-c.

tee – Read from Stdin and Output to Stdout and Files

In keeping with our plumbing metaphor, Linux provides a command called tee which

65

6 – Redirection

creates a “tee” fitting on our pipe. The tee program reads standard input and copies it to
both standard output (allowing the data to continue down the pipeline) and to one or more
files. This is useful for capturing a pipeline's contents at an intermediate stage of process-
ing. Here we repeat one of our earlier examples, this time including tee to capture the
entire directory listing to the file ls.txt before grep filters the pipeline's contents:

[me@linuxbox ~]$ ls /usr/bin | tee ls.txt | grep zip
bunzip2
bzip2
gunzip
gzip
unzip
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit

Summing Up

As always, check out the documentation of each of the commands we have covered in
this chapter. We have seen only their most basic usage. They all have a number of inter-
esting options. As we gain Linux experience, we will see that the redirection feature of
the command line is extremely useful for solving specialized problems. There are many
commands that make use of standard input and output, and almost all command line pro-
grams use standard error to display their informative messages.

Linux Is About Imagination

When I am asked to explain the difference between Windows and Linux, I often
use a toy analogy.

Windows is like a Game Boy. You go to the store and buy one all shiny new in the
box. You take it home, turn it on, and play with it. Pretty graphics, cute sounds.
After a while, though, you get tired of the game that came with it, so you go back
to the store and buy another one. This cycle repeats over and over. Finally, you go
back to the store and say to the person behind the counter, “I want a game that
does this!” only to be told that no such game exists because there is no “market

66

Summing Up

demand” for it. Then you say, “But I only need to change this one thing!” The
person behind the counter says you can't change it. The games are all sealed up in
their cartridges. You discover that your toy is limited to the games others have de-
cided that you need.

Linux, on the other hand, is like the world's largest Erector Set. You open it, and
it's just a huge collection of parts. There's a lot of steel struts, screws, nuts, gears,
pulleys, motors, and a few suggestions on what to build. So, you start to play with
it. You build one of the suggestions and then another. After a while you discover
that you have your own ideas of what to make. You don't ever have to go back to
the store, as you already have everything you need. The Erector Set takes on the
shape of your imagination. It does what you want.

Your choice of toys is, of course, a personal thing, so which toy would you find
more satisfying?

67

