
Date: Tue, 15 Jul 2008 11:20:04 +0200
From: Jaap-Henk Hoepman <jhh[at]cs.ru.nl>
To: John Young <jya[at]pipeline.com>
CC: gkoningg[at]sci.ru.nl, flaviog[at]cs.ru.nl, Bart Jacobs
<B.Jacobs[at]cs.ru.nl>
Subject: Re: MIFARE Paper Query

Dear John,

This paper is not the same as the paper that is subject to a lawsuit
by
NXP. It is available on the web since several months and will be
published officially in the proceedings of the Cardis'08 conference
in september. The paper of the lawsuit builds on it.

Regards,
Jaap-Henk

John Young wrote:
> Cryptome.org has mirrored your "A Practical Attack on the MIFARE
Classic"
> published on arXiv. We have been questioned by readers about the
relation
> of this paper to the suit by NXP. Could you clarify the relation if
there
> is any?
>
> Thanks very much.
>
> Best regards,
>
> John Young
> Cryptome Administrator
>

--
Jaap-Henk Hoepman���������� |� I've got sunshine in my pockets
TNO, Groningen &����������� |� Brought it back to spray the day
Dept. of Computer Science�� |����� Gry "Rocket"
Radboud University Nijmegen |� (m) jhh[at]cs.ru.nl /
(w) www.cs.ru.nl/~jhh������ |����� jaap-henk.hoepman[at]tno.nl

 (t) +31 50 58 57754� ��� |� (f) +31 50 58 57757

ar
X

iv
:0

80
3.

22
85

v2
 [

cs
.C

R
]

 2
6

Ju
n

20
08

A Practical Attack on the MIFARE Classic

Gerhard de Koning Gans, Jaap-Henk Hoepman, and Flavio D. Garcia

Institute for Computing and Information Sciences
Radboud University Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
gkoningg@sci.ru.nl,

jhh@cs.ru.nl,
flaviog@cs.ru.nl

Abstract. The mifare Classic is the most widely used contactless smart
card in the market. Its design and implementation details are kept secret
by its manufacturer. This paper studies the architecture of the card and the
communication protocol between card and reader. Then it gives a practical,
low-cost, attack that recovers secret information from the memory of the card.
Due to a weakness in the pseudo-random generator, we are able to recover
the keystream generated by the CRYPTO1 stream cipher. We exploit the
malleability of the stream cipher to read all memory blocks of the first sector
of the card. Moreover, we are able to read any sector of the memory of the
card, provided that we know one memory block within this sector. Finally,
and perhaps more damaging, the same holds for modifying memory blocks.

1 Introduction

RFID and contactless smart cards have become pervasive technologies nowadays.
Over the last few years, more and more systems adopted this technology as replace-
ment for barcodes, magnetic stripe cards and paper tickets for a variety of appli-
cations. Contact-less cards consist of a small piece of memory that can be accessed
wirelessly, but unlike RFID tags, they also have some computing capabilities. Most of
these cards implement some sort of simple symmetric-key cryptography, which makes
them suitable for applications that require access control.

A number of high profile applications make use of contactless smart cards for
access control. For example, they are used for payment in several public transport
systems like the Octopus card1 in Hong Kong, the Oyster card2 in London, and
the OV-Chipkaart3 in The Netherlands, among others. Many countries have already
incorporated a contactless card in their electronic passports [3] and several car man-
ufacturers have it embedded in their car keys as an anti-theft method. Many office
buildings and even secured facilities like airports and military bases, use contactless
smart cards for access control.

1 http://www.octopuscards.com/
2 http://oyster.tfl.gov.uk
3 http://www.ov-chipkaart.nl/

http://aps.arXiv.org/abs/0803.2285v2
http://www.octopuscards.com/
http://oyster.tfl.gov.uk
http://www.ov-chipkaart.nl/

On the one hand, the wireless interface has practical advantages: without me-
chanical components between readers and cards, the system has lower maintenance
costs, is more reliable, and has shorter reading times, providing higher throughput.
On the other hand, it represents a potential threat to privacy [3] and it is susceptible
to relay, replay and skimming attacks that were not possible before.

There is a huge variety of cards on the market. They differ in size, casing, memory
and computing power. They also differ in the security features they provide. A well
known and widely used system is mifare. mifare is a product family from NXP semi-
conductors (formerly Philips). According to NXP there are about 200 million mifare

cards in use around the world, covering 85% of the contactless smartcard market.
The mifare family contains four different types of cards: Ultralight, Standard, DES-
Fire and SmartMX. The mifare Classic cards come in three different memory sizes:
320B, 1KB and 4KB. The mifare Classic is the most widely used contactless card
in the market. Throughout this paper we focus on this card. mifare Classic provides
mutual authentication and data secrecy by means of the so called CRYPTO1 stream
cipher. This cipher is a proprietary algorithm of NXP and its design is kept secret.

Nohl and Plötz [7] have recently reverse engineered the hardware of the chip
and exposed several weaknesses. Among them, due to a weakness on the pseudo-
random generator, is the observation that the 32-bit nonces used for authentication
have only 16 bits of entropy. They also noticed that the pseudo-random generator
is stateless. They claim to have knowledge of the exact encryption algorithm which
would facilitate an off-line brute force attack on the 48-bit keys. Such an attack
would be feasible, in a reasonable amount of time, especially if dedicated hardware
is available.

Our Contribution We used a Proxmark III4 to analyze mifare cards and mount
an attack. To do so, we have implemented the ISO 14443-A functionality on the
Proxmark, since only ISO 14443-B was implemented at that time. We programmed
both processing and generation of reader-to-tag and tag-to-reader communication at
physical and higher levels of the protocol. The source code of the firmware is available
in the public domain5. Concurrently, and independently from Nohl and Plötz results,
we also noticed a weakness in the pseudo-random generator.

Our contribution is threefold: First and foremost, using the weakness of the
pseudo-random generator, and given access to a particular mifare card, we are able
to recover the keystream generated by the CRYPTO1 stream cipher, without know-
ing the encryption key. Secondly, we describe in detail the communication between
tag and reader. Finally, we exploit the malleability of the stream cipher to read all

memory blocks of the first sector (sector zero) of the card (without having access to
the secret key). In general, we are able to read any sector of the memory of the card,
provided that we know one memory block within this sector. After eavesdropping a
transaction, we are always able to read the first 6 bytes of every block in that sector,
and in most cases also the last 6 bytes. This leaves only 4 unrevealed bytes in those
blocks.

4 http://cq.cx/proxmark3.pl
5 http://www.proxmark.org

http://cq.cx/proxmark3.pl
http://www.proxmark.org

We would like to stress that we notified NXP of our findings before publishing our
results. Moreover, we gave them the opportunity to discuss with us how to publish
our results without damaging their (and their customers) immediate interests. They
did not take advantage of this offer.

Consequences of our attack Any system using mifare Classic cards that relies
on the secrecy or the authenticity of the information stored on sector zero is now
insecure. Our attack recovers, in a few minutes, all secret information in that sector.
It also allows us to modify any information stored there. This is also true for most
of the data in the remaining sectors, depending on the specific scenario. Besides, our
attack complements Nohl and Plötz results providing the necessary plaintext for a
brute force attack on the keys. This is currently work in progress.

Outline of this paper Section 2 describes the architecture of the mifare cards and
the communication protocol. Section 3 describes the hardware used to mount the at-
tack. Section 4 discusses the protocol by a sample trace. Section 5 exposes weaknesses
in the design of the cards. The attack itself is described in Section 6. Finally, Section 8
gives some concluding remarks and detailed suggestions for improvement.

2 MIFARE Classic

Contactless smartcards are used in many applications nowadays. Contactless cards
are based on radio frequency identification technology (RFID) [1]. In 1995 NXP,
Philips at that time, introduced mifare

6. Some target applications of mifare are
public transportation, access control and event ticketing. The mifare Classic [8] card
is a member of the mifare product family and is compliant with ISO 14443 up to
part 3. ISO 14443 part 4 defines the high-level protocol and here the implementation
of NXP differs from the standard. Section 2.1 discusses the different parts of the ISO
standard.

2.1 Communication Layer

The communication layer of the mifare Classic card is based on the ISO 14443
standard [4]. This ISO standard defines the communication for identification cards,
contactless integrated circuit(s) cards and proximity cards. The standard consists of
four parts.
Part 1 describes the physical characteristics and circumstances under which the card
should be able to operate.
Part 2 defines the communication between the reader and the card and vice versa. The
data can be encoded and modulated in two ways, type A and type B. mifare Classic
uses type A. For more detailed information about the communication on RFID we
refer to the “RFID Handbook” by Klaus Finkenzeller [1].
Part 3 describes the initialization and anticollision protocol. The anticollision is

6 http://www.nxp.com

http://www.nxp.com

needed in order to select a particular card when more cards are present within the
reading range of the reader. After a successful initialization and anticollision the card
is in an active state and ready to receive a command.
Part 4 defines how commands are send. This is the point where mifare Classic differs
from the ISO standard, using a proprietary and undisclosed protocol. The mifare

Classic starts with an authentication, after that all communication is encrypted. On
every eight bits a parity bit is computed to detect transmission errors. In the mifare

Classic protocol this parity bit is also encrypted which means that integrity checks
are only possible in the application layer.

2.2 Logical Structure

A mifare Classic card is in principle a memory card with few extra functionalities.
The memory is divided into data blocks of 16 bytes. Those data blocks are grouped
into sectors. The mifare Classic 1k card has 16 sectors of 4 data blocks each. The
first 32 sectors of a mifare Classic 4k card consists of 4 data blocks and the remaining
8 sectors consist of 16 data blocks. Every last data block of a sector is called sector

trailer. A schematic of the memory of a mifare Classic 4k card is shown in Figure 1.

Note that block 0 of sector 0 contains special data. The first 4 data bytes contain the
unique identifier of the card (UID) followed by its 1-byte bit count check (BCC). The
bit count check is calculated by successively XOR-ing all UID bytes. The remaining
bytes are used to store manufacturer data. This data block is read-only. The reader

Fig. 1: mifare Classic 4k Memory

needs to authenticate for a sector before any memory operations are allowed. The
sector trailer contains the secret keys A and B which are used for authentication.
The access conditions define which operations are available for this sector.

The sector trailer has special access conditions. Key A is never readable and key
B can be configured as readable or not. In that case the memory is just used for
data storage and key B cannot be used as an authentication key. Besides the access
conditions (AC) and keys, there is one data byte (U) remaining which has no defined
purpose. A schematic of the sector trailer is shown in Figure 2a. A data block is used
to store arbitrary data or can be configured as a value block. When used as a value
block a signed 4-byte value is stored twice non-inverted and once inverted. Inverted
here means that every bit of the value is XOR-ed with 1. These four bytes are stored
from the least significant byte on the left to the most significant byte on the right.
The four remaining bytes are used to store a 1-byte block address that can be used
as a pointer.

(a) Sector Trailer (b) Value Block

Fig. 2: Block contents

2.3 Commands

The command set of mifare Classic is small. Most commands are related to a data
block and require the reader to be authenticated for its containing sector. The access
conditions are checked every time a command is executed to determine whether it is
allowed or not. A block of data might be configured to be read only. Another example
of a restriction might be a value block which can only be decremented.

Read and Write The read and write commands read or write one data block. This
is either a data block or a value block. The write command can be used to format a
data block as value block or just store arbitrary data.

Decrement, Increment, Restore and Transfer These commands are only al-
lowed on data blocks that are formatted as value blocks. The increment and decre-

ment commands will increment or decrement a value block with a given value and
place the result in a memory register. The restore command loads a value into the
memory register without any change. Finally the memory register is transferred in
the same block or transferred to another block by the transfer command.

2.4 Security Features

The mifare Classic card has some built-in security features. The communication is
encrypted by the proprietary stream cipher CRYPTO1.

Keys The 48-bit keys used for authentication are stored in the sector trailer of each
sector (see section 2.2). mifare Classic uses symmetric keys.

Authentication Protocol mifare Classic makes use of a mutual three pass au-
thentication protocol that is based on ISO 9798-2 according to the mifare docu-
mentation [8]. However, it turned out that this is not completely true [2]. In this
paper we only use the first initial nonce that is send by the card. The reader sends a
request for sector authentication and the card will respond with a 32-bit nonce NC .
Then, the reader sends back an 8-byte answer to that nonce which also contains a
reader random NR. This answer is the first encrypted message after the start of the
authentication procedure. Finally, the card sends a 4-byte response. As far as our
attack is concerned this description captures all the necessary information.

3 Hardware and Software

An RFID system consists of a transponder (card) and a reader [1]. The reader contains
a radio frequency module, a control unit and a coupling element to the card. The card
contains a coupling element and a microchip. The control unit of a mifare Classic
enabled reader is typically a mifare microchip with a closed design. This microchip
communicates with the application software and executes commands from it. Note
that the actual modulation of commands is done by this microchip and not by the
application software. The design of the microchip of the card is closed and so is the
communication protocol between card and reader.

Fig. 3: The Proxmark III

We want to evaluate the security properties of
the mifare system. Therefore we need hardware to
eavesdrop a transaction. It should also be possible
to act like a mifare reader to communicate with
the card. The Proxmark III developed by Jonathan
Westhues has these possibilities7. Because of its flex-
ible design, it is possible to adjust the Digital Signal
Processing to support a specific protocol. This device
supports both low frequency (125 kHz - 134kHz) and
high frequency (13.56MHz) signal processing. The
signal from the antenna is routed through a Field
Programmable Gate Array (FPGA). This FPGA re-
lays the signal to the microcontroller and can be used
to perform some filtering operations before relaying.
The software implementation allows the Proxmark
to eavesdrop communication (Figure 4) between an RFID tag and a reader, emulate
a tag and a reader. In this case our tag will be the mifare Classic card. Despite
the basic hardware support for these operations the actual processing of the digitized
signal and (de)modulation needs to be programmed for each specific application. The

7 Hardware design and software is publicly available at http://cq.cx/proxmark3.pl

http://cq.cx/proxmark3.pl

Fig. 4: Experimental Setup

physical layer of the mifare Classic card is implemented according to the ISO14443-
A standard [4]. We had to implement the ISO14443-A functionality since it was not
implemented yet. This means we had to program both processing and generation
of reader-to-tag and tag-to-reader communication in the physical layer and higher
level protocol. To meet the requirements of a replay attack we added the functions
‘hi14asnoop’ to make traces, ‘hi14areader’ to act like a reader and ‘hi14asim’ to sim-
ulate a card. We added the possibility to send custom parity bits. This was needed
because parity bits are part of the encryption.

4 Communication Characteristics

To find out what the mifare Classic communication looks like we made traces of
transactions between mifare readers and cards. This way, we gathered many traces
which gave us some insights on the high-level protocol of mifare Classic. In this
section we explain a trace we recorded as an example, which is shown in Figure 5.
This trace contains every part of a transaction. We refer to the sequence number
(SEQ) of the messages we discuss. The messages from the reader are shown as PCD
(Proximity Coupling Device) messages and from the card as TAG messages. The time
between messages is shown in Elementary Time Units (ETU). One ETU is a quarter
of the bit period, which equals 1.18µs. The messages are represented in hexadecimal
notation. If the parity bit of a byte is incorrect8, this is shown by an exclamation
mark. We will discuss only the most significant messages.

Anticollision The reader starts the SELECT procedure. The reader sends 93 20

(#3), on which the card will respond with its unique identifier (#4). The reader sends
93 70 followed by the UID and two CRC bytes (#5) to select the card.

Authentication The card is in the active state and ready to handle any higher
layer commands. In Section 2.4 we discussed the authentication protocol. In Figure
5, messages #7 to #10 correspond to the authentication.

8 encrypted parity bits show up as parity error in the message

ETU SEQ sender bytes

0 : 01 : PCD 26

64 : 02 : TAG 04 00

12097 : 03 : PCD 93 20

64 : 04 : TAG 2a 69 8d 43 8d

16305 : 05 : PCD 93 70 2a 69 8d 43 8d 52 55

64 : 06 : TAG 08 b6 dd

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

Anticollision

16504 : 07 : PCD 60 04 d1 3d

112 : 08 : TAG 3b ae 03 2d

6952 : 09 : PCD c4! 94 a1 d2 6e! 96 86! 42
64 : 10 : TAG 84 66! 05! 9e!

9

>

>

=

>

>

;

Authentication

396196 : 11 : PCD a0 61! d3! e3
208 : 12 : TAG 0d

8442 : 13 : PCD 26 42 ea 1d f1! 68!
5120 : 14 : PCD 8d! ca cd ea

2816 : 15 : TAG 06!

9

>

>

>

>

=

>

>

>

>

;

Increment & Transfer

1349238 : 16 : PCD 2a 2b 17 97

72 : 17 : TAG 49! 09! 3b! 4e! 9e! 5e b0 06 d0!
07! 1a! 4a! b4! 5c b0! 4f c8! a4!

9

=

;

Read

Fig. 5: Trace of a card with default keys, recorded by the Proxmark III

The authentication request of the reader is 60 04 d1 3d (#07). The first byte 60

stands for an authentication request with key A. For authentication with key B, the
first byte must be 61. The second byte indicates that the reader wants to authenticate
for block 4. Note that block 4 is part of sector 1 and therefore this is an authentication
request for sector 1. The last two bytes are CRC bytes.

Encrypted Communication After this successful authentication the card is ready
to handle commands for sector 1. The structure of the commands can be recognized
clearly. Since we control the mifare Classic reader we knew which commands were
sent. Message #11 to #15 show how an increment is performed. The increment is
immediately followed by a read command (#16 and #17).

5 Weakness in MIFARE Classic

Nohl and Plötz partially recovered the CRYPTO1 algorithm that is used to encrypt
the communication between the card and the reader [7,5]. The pseudo-random gener-
ator on the card, which initiates the algorithm by generating a nonce, is weak. In our
analysis, we use this weakness to extend the work of Nohl and Plötz with a practical
attack, which delivers the needed known plaintext for brute-force, and a description
of the mifare Classic protocol. In this attack, we do not need knowledge about the
CRYPTO1 algorithm other than that it is a stream cipher which encrypts bitwise.

During our experiments, independently, we also noted the weakness of the pseudo-
random generator of the card by requesting many card nonces. We were able to

request about 600,000 nonces every hour. Within one hour, a nonce reappeared at
least about four times. The nonce is generated by a Linear Feedback Shift Register

(LFSR) [5] which shifts every 9.44µs. This is exactly one bit period in the commu-
nication. Therefore a random nonce could theoretically reappear after 0.618s, if the
card is queried at exactly the right time.
In another experiment, we tried to request a nonce at a fixed time after powering-up9

the card. This way, we could reduce the card nonces to ten different ones, which
decreases the waiting time.

Without knowing the cryptographic algorithm, only an online brute force attack on
the key can be mounted. Because of the communication delay, this would take 5ms
for each attempt. An exhaustive key search would then take 16,289,061 days, which
equals about 44,627 years.
When the cryptographic algorithm is known, an off-line brute force attack can be
mounted using a few eavesdropped traces of an authentication run. Nohl and Plötz
state that with dedicated hardware of around $17,000 this would take about one hour.
For this attack to work, some known plaintext is required. Our analysis provides this
plaintext.

6 Keystream Recovery Attack

In Section 5 we discussed a weakness in the pseudo-random generator of the mifare

Classic. In this section we deploy a method to recover the keystream that was used in
an earlier recorded transaction between a reader and a card. As a result the keystream
of the communication will be recovered. For this attack we need to be in possession
of the card. The following reasons make this attack interesting:

1. Our attack provides the known plaintext necessary to mount a brute force attack
on the key.

2. Using our attack we recovered details about the byte commands.
3. Using the recovered keystream we can read card contents without knowing the

key.
4. Using the recovered keystream we can also modify the contents of the card without

knowing the key.

6.1 Keystream Recovery

To recover the keystream we exploit the weakness of the pseudo-random generator.
As it is this random nonce in combination with only one valid response of the reader
what determines the remaining keystream. For this attack we need complete control
over the reader (Proxmark) and access to a (genuine) card. The attack consists of
the following steps:

1. Eavesdrop the communication between a reader and a card. This can be for
example in an access control system or public transport system.

9 as was suggested by Nohl and Plötz [7]

2. Make sure that the card will use the same keystream as in the recorded commu-
nication. This is possible because the card repeats the same nonce in reasonable
time, and we completely control the reader.

3. Modify the plaintext, such that the card receives a command for which we know
plaintext in the response (e.g., by changing the block number in a read command).

4. For each segment of known plaintext, compute the corresponding keystream seg-
ment.

5. Use this keystream to partially decrypt the trace obtained in 1.
6. Try recovering more keystream bits by shifting commands.

The plaintext P1 in the communication is XOR-ed bitwise with a keystream K

which gives the encrypted data C1. When it is possible to use the same keystream
on a different plaintext P2 and either P1 or P2 is known, then both P1 and P2 are
revealed.

P1 ⊕ K = C1

P2 ⊕ K = C2

}

C1 ⊕ C2 ⇒ P1 ⊕ P2 ⊕ K ⊕ K ⇒ P1 ⊕ P2 (1)

The weak pseudo-random generator makes it possible to replay an earlier recorded
transaction. We can flip ciphertext bits to try to modify the first command such that
it gives another result. Another result gives us another plain text. The attack is based
on this principle.

6.2 Keystream Mapping

The data is encrypted bitwise. When the reader sends or receives a message, the
keystream is shifted the number of bits in this message on both the reader and card
side. This is needed to stay synchronized and use the same keystream bits to encrypt
and decrypt. The stream cipher does not use any feedback mechanism. Despite that,
when we tried to reveal the contents of a message sequence using a known keystream
of an earlier trace, something went wrong. We recorded an increment followed by
a transfer command. We used this trace to apply our attack and changed the first
command to a read command which consists of 4 command bytes and delivers 18
response bytes. Together with the parity bits this makes it a 198 bit stream. The
plaintext was known and therefore we recovered 198 keystream bits.

When we used this keystream to map it on the original trace of the increment

(Figure 6), it turned out that the keystream was not in phase after the first command.
The reason was the short 4-bit answer of the card that is not followed by a parity bit.
In our original trace we are now half way the first response byte. This means that
after 4 more bits we arrive at the parity bit in the original trace. However, in our
new trace we are then half way the next command byte. To correct this we needed
to throw away the keystream bit that was originally used to encrypt the parity bit.
But what to do when we need to decrypt a parity bit in the new situation and we are
half way a byte with respect to the first trace? The solution is to encrypt the parity
bit with the next bit from the recovered keystream and use this same keystream bit
to decrypt the next data bit.
From this we can conclude that parity bits are encrypted with keystream bits that
are also used to encrypt databits.

INCREMENT ACK VALUE TRANSFER ACK

Plaintext c1 04 f6 8b 0a 01 00 00 00 bb 4a b0 04 ea 62 0a

Ciphertext 4c 88 31 bc! 0a! e2 79!2a!14 35!6f! 04!81 2d!1e! 0c!

Fig. 6: Recovering the Keystream and Commands

The following method successfully maps the keystream on another message sequence
as we described above.
Take the recovered keystream and strip all the keystream bits from it that were at
parity bit positions. The remaining keystream can be used to encrypt new messages.
Every time a parity bit needs to be encrypted, use the next keystream bit without
shifting the keystream, in all other cases use the next keystream bit and shift the
keystream.

6.3 Authentication Replay

To replay an authentication we first need a trace of a successful authentication be-
tween a genuine mifare reader and card. An example of an authentication followed
by one read command is shown below.

1 PCD 60 03 6e 49

2 TAG e0 92 93 98

3 PCD ad e7 96! 48! 20! 22 df 93

4 TAG bf 06 91! 82

5 PCD b5! 05! 47 3f

6 TAG 3f 14! 4f e9! 86 38! 96! 85 3e!

f3 e3! 3d! eb! 2b! a2 d4 dd 76!

After we recorded an authentication between card and reader, we do not modify the
memory. This ensures that the memory of the card remains unaltered and therefore
it will return the same plaintext. Now we will act like a mifare reader and try to
initiate the same authentication. In short:

1. We recorded a trace of a successful authentication between a genuine card and
reader.

2. We send authentication requests (#1) until we get a nonce that is equal to the
one (#2) in the original trace.

3. We send the recorded response (#3) to this nonce. It consists of a valid response
to the challenge nonce and a challenge from the reader.

4. We retrieve the response (#4) to the challenge from the card.
5. Now we are at the point where we could resend the same command (#5) or

attempt to modify it.

6.4 Reading Sector Zero

We will show that it is possible to read sector 0 from a card without knowing the
key. We only need one transaction between a genuine mifare reader and card. Every

mifare Classic card has some known memory contents. The product information
published by NXP [8] gives this information.
When a sector trailer is read the card will return logical ‘0’s instead of key A because
key A is not readable. If key B is not readable the card also returns logical ‘0’s. It
depends on the access conditions if key B is readable or not. The access conditions

Fig. 7: Recovering Sector Zero

can be recovered by using the manufacturer data. Block 0 contains the UID and BCC
followed by the manufacturer data. The UID and BCC cover 5 bytes and are known.
The remaining 11 bytes are covered by the manufacturer data. Some investigation
on different cards (mifare Classic 1k and 4k) revealed that the first 5 bytes of the
manufacturer data almost never change. These bytes (MFR1) cover the positions of
the access conditions (AC) and the unknown byte U, as shown in Figure 7. This means
that the keystream can be recovered using the known MFR1 bytes by reading block
0 and block 3 (sector trailer) subsequently. Remember that the access conditions are
stored twice in 3 bytes. Once inverted and once non-inverted. This way it is easy to
detect if we indeed revealed the access conditions. The unknown byte U can be in
any state when the card leaves the manufacturer but appears to be often 00 or 69.

The access conditions tell us whether key B is readable or not. In many cases key
B is not readable, for instance as in the OV-Chipkaart10 that is used in the Dutch
public transport system. The first 5 bytes of the manufacturer data (MFR1 in Figure
7) recovered the access conditions for sector 0. Because the access conditions for the
sector trailer define key B as not readable, we know the plaintext is zeros. Hence
the whole sector trailer was revealed and therefore the contents of the whole sector 0
were revealed as well.

7 Reading Higher Sectors

In the higher sectors of the mifare Classic card we do not have the advance of
the manufacturer data. We basically have the sector trailer and some unknown data
blocks. Because of key A we can recover always the first 10 keystream bytes. Key
B is in most cases not readable and therefore will give 6 more keystream bytes, but
leaves us with a gap of 4 bytes (AC and U).
Although it is harder to achieve, there is a potential threat for these sectors to become
compromised.

10
mifare Classic 4k card

7.1 Proprietary Command Codes

At the time this research was performed, we were not aware that the command codes,
which we revealed with our attack, could already be found in example firmware of
NXP11. Note that the firmware refers to the command codes sent from PC to reader.
Our research shows that (perhaps obviously) these are the same command codes sent
from reader to card.

We used a card in transport configuration with default keys and empty data blocks
to reveal the encrypted commands used in the high-level protocol. All the commands
send by the reader consist of a command byte, parameter byte and two CRC bytes.
We made several attempts to reveal the command by modifying the ciphertext of this
command. The way to do this is to assume we actually know the command. With
this ‘knowledge’ we XOR the ciphertext which gives us the keystream. To check if
this is indeed the correct keystream, we XOR it with a new command for which we
know the response. If we guessed the initial command right the response of the card
will be that known response. This method revealed the commands shown in Figure 8.

Now, one could try to replay the same authentication again and try to execute a
command that returns an ACK or NACK in order to recover more keystream. Because
an ACK or NACK is only 4 bits in size, it leaves some spare bits for which we know
the keystream. We can use these bits to execute another command for which we now
know the plaintext. This delivers more known keystream as a result, and this method
can be applied repeatedly. However, this approach does only work if a decrement,
increment or transfer is allowed. These are the commands that return an ACK and
therefore are in total shorter than the read. We can only send valid commands because
otherwise the protocol aborts. The read command returns 16 data bytes and 2 CRC

Fig. 8: Command set of mifare Classic

11 http://www.nxp.com/files/markets/identification/download/MC081380.zip

http://www.nxp.com/files/markets/identification/download/MC081380.zip

bytes. On a write command the card returns a 4-bit ACK, this indicates that the
card is ready to receive 16 data bytes followed by 2 CRC bytes.
The decrement, increment and restore commands all follow the same procedure. The
card indicates that it is expecting a value from the reader by sending a 4-bit ACK
response. This value is 4 bytes and is followed by 2 CRC bytes. For the restore this
value is send but not used. The value is send as YY YY YY YY ZZ ZZ, where YY are
the value bytes and ZZ the CRC bytes.
Finally, a transfer command is send to transfer the result of one of the previous
commands to a memory block. The card response is an ACK if it went well. Otherwise
it responds with a NACK.

The 4-bit ACK is 0xa. When a command is not allowed the card sends 0x4. When
a transmission error is detected the card sends 0x5. The card does not even give a
response at all if the command is of the wrong length. The protocol aborts on every
mistake or disallowed command.

8 Conclusions & Recommendations

We have implemented a successful attack to recover the keystream of an earlier
recorded transaction between a genuine mifare Classic reader and card.

We used a mifare Classic reader in combination with a ‘blank’ card with default
keys to recover the byte commands that are used in the proprietary protocol. Knowing
the byte commands and a sufficiently long keystream allowed us to perform any
operation as if we were in possession of the secret key.

We managed to read all memory blocks of the sector zero of the card, without
having access to the secret key. In general, we were able to read any sector of the
memory of the card, provided that we know one memory block within this sector.
Moreover, after recording a valid transaction on any sector, we were able to read the
first 6 bytes of any block in that sector and also the last 6 bytes if key B is read only.
Similarly, we are able to modify the information stored in a particular sector.

Consequences First of all, all data stored on the card (except the keys themselves)
should no longer be considered secret. In particular, if the mifare Classic card is
used to store personal information (like name, date of birth, or travel information),
this constitutes a direct privacy risk. The security risk is relatively low because in
general the security is guaranteed by the secrecy of the keys. Note that in particular
we are not able to clone cards, because the secret keys remain secret.

Secondly, the integrity and authenticity of the data stored on the card can no
longer be relied on. This is quite a severe security risk. This is particularly worrying
in applications where the card is used to store a certain value, like loyalty points or,
even worse, some form of digital currency. The loyalty level or the value stored in the
electronic purse could easily be increased (or decreased, in a denial-of-service type of
attack).

Thirdly, knowledge of the plaintext (or the keystream) is a necessary condition to
perform brute force (or other more sophisticated) attacks to recover the secret key.
We are making good progress in developing a very efficient attack to recover arbitrary
sector keys of a mifare Classic card.

Recommendations For short term improvements we recommend not to use sector
zero to store secret information. Configure key B as readable and store random in-
formation in it. Do not store sensitive information in the first 6 bytes of any sector.
Use multiple sector authentications in one transaction to thwart attackers in an at-
tempt to recover plaintext. This is only helpful when value block commands are not
allowed. Value block commands are shorter than a read command and will enable
a shift of the keystream. Another possibility, that might be viable for some applica-
tions, is to employ another encryption scheme like AES in the backoffice, and store
only encrypted information on the tags. To prevent unauthorized modification of a
data block, an extra authentication on this data could be added. This authentication
is then verified in the backoffice.

Proper fraud detection mechanisms and extra security features in the backoffice
are necessary to signal or even prevent the types of attacks described above. In
general, the backoffice systems collecting and processing data that comes from the
readers are a very important second line of defense.

On the long term these countermeasures will not be sufficient. The mifare Classic
card has a closed design. Security by obscurity has shown several times that at some
point the details of the system will be revealed compromising security [6]. Therefore
we recommend to migrate to more advanced cards with an open design architecture.

References

1. Klaus Finkenzeller. RFID Handbook. John Wiley and Sons, 2nd edition, 2003.
2. Flavio D. Garcia, Gerhard de Koning Gans, Ruben Muijrers, Peter van Rossum, Roel

Verdult, and Ronny Wichers Schreur. Dismantling MIFARE Classic. Forthcoming.
3. J.-H. Hoepman, E. Hubbers, B. Jacobs, M. Oostdijk, and R. Wichers Schreur. Crossing

Borders: Security and Privacy Issues of the European e-Passport. In Hiroshi Yoshiura,
Kouichi Sakurai, Kai Rannenberg, Yuko Murayama, and Shinichi Kawamura, editors,
Advances in Information and Computer Security. International Workshop on Security
(IWSEC 2006), volume 4266 of Lecture Notes in Computer Science, pages 152–167.
Springer Verlag, 2006.

4. ISO/IEC 14443. Identification cards - Contactless integrated circuit(s) cards - Proximity
cards, 2001.

5. Starbug Karsten Nohl, David Evans and Henryk Plötz. Reverse-Engineering a Crypto-
graphic RFID Tag. 2008. USENIX Security Symposium. San Jose, CA. 31 July 2008.

6. Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences militaires, IX, 1983.
pp. 5–38, Jan. 1883, and pp. 161–191, Feb. 1883.

7. Karsten Nohl and Henryk Plötz. MIFARE, Little Security, Despite Obscurity. Presenta-
tion on the 24th Congress of the Chaos Computer Club in Berlin, December 2007.

8. NXP Semiconductors. MIFARE Standard 4KByte Card IC functional specification,
February 2007.

	mifare-classic.pdf
	A Practical Attack on the MIFARE Classic
	Gerhard de Koning Gans, Jaap-Henk Hoepman, and Flavio D. Garcia

