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A method is introduced for detecting intrusions at the level of privileged
processes. Evidence is given that short sequences of system calls executed
by running programs are a good discriminator between normal and
abnormal operating characteristics of several common UNIX programs.
Normal behavior is collected in two ways: Synthetically, by exercising as
many normal modes of usage of a program as possible, and in a live user
environment by tracing the actual execution of the program. In the former
case several types of intrusive behavior were studied; in the latter case, we
analyze results were analyzed for false positives.

1. Introduction

Modern computer systems are plagued by security vulnerabiliti es. Whether it is the latest
UNIX buffer overflow or bug in Microsoft Internet Explorer, our applications and
operating systems are full of security flaws on many levels. From the viewpoint of the
traditional security paradigm, it should be possible to eliminate such problems through
more extensive use of formal methods and better software engineering. This view rests on
several assumptions: That security policy can be explicitl y and correctly specified, that
programs can be correctly implemented, and that systems can be correctly configured.
Although these assumptions may be theoretically reasonable, in practice none of them
holds. Computers systems are not static: They are continually changed by vendors, system
administrators, and users. Programs are added and removed, and configurations are
changed. Formal verification of a statically defined system is time-consuming and hard to
do correctly; formal verification of a dynamic system is impractical. Without formal
verifications, tools such as encryption, access controls, firewalls, and audit trails all
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become falli ble, making perfect implementation of a security policy impossible, even if a
correct policy could be devised in the first place. If we accept that our security policies,
our implementations, and our configurations are flawed in practice, then we must also
accept that we will have imperfect security. We can incrementally improve security
through the use of tools such as Intrusion Detection Systems (IDS). The IDS approach to
security is based on the assumption that a system will not be secure, but that violations of
security policy (intrusions) can be detected by monitoring and analyzing system behavior.

There are many different levels on which an IDS can monitor system behavior. It is
criti cal to profile normal behavior at a level that is both robust to variations in normal and
perturbed by intrusions. In the work reported here, we chose to monitor behavior at the
level of privileged processes. Privileged processes are running programs that perform
services (such as sending or receiving mail ), which require access to system resources
that are inaccessible to the ordinary user. To enable these processes to perform their jobs,
they are given privileges over and above those of an ordinary user (even though they can
be invoked by ordinary users). In UNIX, processes usually run with the privileges of the
user that invoked them. However, privileged processes can change their privileges to that
of the superuser by means of the setuid mechanism. One of the security problems with
privileged processes in UNIX is that the granularity of permissions is too coarse:
Privileged processes need superuser status to access system resources, but granting them
such status gives them more permission than necessary to perform their specific tasks
[30]. Consequently, they have permission to access all system resources, not just those
that are relevant to their operation. Privileged processes are trusted to access only relevant
system resources, but in cases where there is some programming error in the code that the
privileged process is running, or if the privileged process is incorrectly configured, an
ordinary user may be able to gain superuser privileges by exploiting the problem in the
program. For the sake of brevity, we usually refer to privileged processes (or programs)
simply as “processes” (or “programs”), and use the qualifier only to resolve ambiguities.

It is clear that privileged processes are a good level to focus on because exploitation of
vulnerabiliti es in privileged processes can give an intruder super-user status. Furthermore,
privileged processes constitute a natural boundary for a computer, especially processes
that listen to a particular port. In UNIX, privileged programs, such as telnetd and
logind, function as servers that control access into the system. Corruption of these
servers can allow an intruder to access the system remotely. Monitoring privileged
processes also offers some advantages over monitoring user behavior, which has been the
most common method to date (for example, see [5],[12],[26],[35],[39]). The range of
behaviors of privileged processes is limited compared to the range of behaviors of users;
privileged processes usually perform a specific, limited function, whereas users can carry
out a wide variety of actions. Finally, the behavior of privileged processes is relatively
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stable over time, especially compared to user behavior. Not only do users perform a wider
variety of actions, but the actions performed may change considerably over time, whereas
the actions (or at least the functions) of privileged processes usually do not vary much
with time.

Our approach to detecting irregularities in the behavior of privileged programs is to
regard the program as a black box, which, when run, emits some observable. We believe
that this observable should be a dynamic characteristic of that program; although code
stored on disk may have the potential to do harm, it has to be actually running to realize
that potential. If we regard the program as a black-box, we do not need specialized
knowledge of the internal functioning or the intended role of the program; we can infer
these indirectly by observing its normal behavior1. A natural observable for processes in
UNIX would be based on system calls, because UNIX processes accesses system
resources through the use of system calls. We have chosen short sequences of system
calls as our observable.

In an earlier study we reported preliminary evidence that short sequences of system calls
are a good simple discriminator for several types of intrusions [18]. The results reported
here extend the earlier study, with several important differences. First, we have slightly
changed how we record sequences of system calls: Previously, we used look-ahead pairs,
with a look-ahead value of 6; here we use exact sequences of length 10. Consequently,
the database sizes reported here are smaller than in the earlier study.  Next, we have used
a measure of anomalous behavior that is independent of trace length (based on Hamming
matches between sequences). Finally, we have collected normal behavior in a real, li ve2

environment, and analyzed it for false positives.

We want an IDS that is stable and lightweight (eff icient), all of which depends on the
discriminator (observable) that we use to distinguish between acceptable and
unacceptable behavior. By stable we mean that the discriminator reliably distinguishes
between acceptable and unacceptable behavior. Our approach is experimental because we
believe that current theories do not adequately describe how implemented systems really

                                                
1 There are other approaches that require knowledge of the internals and intended role of a program, most

notably the program specification method [30], which attempts to constrain the process in such a way that it

can perform only those operations that the program is designed to do, and no more, i.e. the method refines

the permissions structure to accommodate specific privileged programs. The differences between our

method and this are discussed more fully in section 6.
2 We use the words “real” and “ live” to refer to a production environment, i.e. an environment which is

currently in normal, everyday use. We contrast this to our “synthetic” environment, which is an isolated test

environment.
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run. In this paper we are primarily concerned with determining empirically if the
discriminator is stable. Eff iciency is a secondary consideration, and is addressed in this
paper to the extent that we analyze the complexity of our algorithm; however, we do not
report actual running times for the method on a production system.

Our work is inspired by the defenses of natural immune systems. There are compelli ng
similarities between the problems faced by immune systems and by computer security
[17]. Both systems must protect a highly complex system from penetration by inimical
agents; to do this, they must be able to discriminate between broad ranges of normal and
abnormal behavior. In the immune system, this discrimination task is known as the
problem of distinguishing “self” (the harmless molecules normally within the body) from
“nonself” (dangerous pathogens and other foreign materials). Discrimination in the
immune system is based on a characteristic structure called a peptide (a short protein
fragment) that is both compact and universal in the body. This limits the effectiveness of
the immune system; for example, the immune system cannot protect the body against
radiation. However, proteins are a component of all li ving matter, and generally differ
between self and nonself, so they provide a good distinguishing characteristic. We view
our chosen discriminator (short sequences of system calls) as analogous to a peptide.

The structure of this paper is as follows. In section 2 we review related work in intrusion
detection. Section 3 describes our method of anomaly intrusion detection: First we
describe how to build up profiles of normal program behavior, and then we define three
ways of detecting anomalies. We then use the method to build a synthetic normal profile
in section 4, demonstrating its effectiveness at detecting intrusions and other anomalies.
In section 5 we consider the consequences of collecting our normal data in online,
functioning environments, discuss false positives, and present experimental results on
false positive rates. The limitations and implications of our approach are discussed in
section 6. A brief appendix is included which details the various intrusions that we used
in our experiments, the methods we used to generate synthetic normal, and a brief
overview of UNIX.

2. Related Work

An Intrusion Detection System (IDS) continuously monitors some dynamic behavioral
characteristics of a computer system to determine if an intrusion has occurred. This
definition excludes many useful computer security methods. Security analysis tools, such
as SATAN [16] and COPS [15] are used to scan a system for weaknesses and possible
security holes. They are not IDS because they do not monitor some dynamic characteristic
of the system for intrusions or evidence of intrusions, rather they scan the system for
weaknesses such as configuration errors or poor password choices that could lead to
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intrusions. Other important non-IDS solutions to computer security problems are
provided by cryptography [13], which is especially useful for authentication and secure
communications [36]. Virus protection schemes such as that described in [28] are also not
IDS under our definition, because they scan static code, not dynamic behavioral
characteristics. Some approaches are not easily classified, for example, integrity checking
systems such as TRIPWIRE [29] monitor important files for changes that could indicate
intrusions. Although such files are static code, they become a dynamic characteristic
indicative of intrusions when modified by intrusive activities, and so TRIPWIRE could be
classified as an IDS.

There are many different architectures for IDS. IDS can be centralized (i.e. processing is
performed on a single machine) or distributed across many machines. Almost all IDS are
centralized; the autonomous agents approach [10] is one of the few proposed IDS that is
truly distributed. Furthermore, an IDS can be host-based or network-based; the former
type monitors activity on a single computer, whereas the latter type monitors activity over
a network. Network-based IDS can monitor information collated from audit trails from
many different hosts (multi -host monitoring) or they can monitor network traff ic. NADIR
[26] and DIDs [25] are examples of IDS that do both multi -host and network traff ic
monitoring; NSM [24] is an IDS that monitors only network traff ic. Regardless of other
architectural considerations, any IDS must have three components: Data collection (and
reduction), data classification and data reporting. Data reporting is usually very simple,
with system administrators being informed of anomalous or intrusive behavior; few IDS
take it upon themselves to act rapidly to deal with irregularities. Various methods for data
collection and classification are discussed below.

An IDS that monitors for intrusive behavior needs to collect data on the dynamic state of
the system. Selecting a set of dynamic behavioral characteristics to monitor is a key
design decision for an IDS, one which will i nfluence the types of analyses that can be
performed and the amount of data that will be collected. Most systems (for example,
IDES/NIDES [34], [35], [5], Wisdom&Sense [33] and TIM [39]) collect profiles of user
behavior, generated by audit logs. Other systems look at network traff ic, for example,
NSM and the system presented in [23]. Other approaches attempt to characterize the
behavior of privileged processes, as in the program specification method [30]. Different
behavioral characteristics will generate different amounts of data; as an extreme example,
systems monitoring user profiles process large volumes of raw data (an average user will
generate from 3 to 35MB of audit data per day [22]). In the latter case the data may need
to be reduced to a manageable size.

Once a behavioral characteristic is selected, it is used to classify data. In the simplest
case, this is a binary decision problem: The data is classified as either normal (acceptable)
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or anomalous (and possibly intrusive). Data classification can be more complex, for
instance, trying to identify the particular type of intrusion associated with anomalous
behavior. A plethora of methods have been used for data classification, the majority of
them using artificial intelli gence techniques (see [22] for a detailed overview).
Classification techniques can be divided into two categories, depending on whether they
look for known intrusion signatures (misuse intrusion detection), or for anomalous
behavior (anomaly intrusion detection). Misuse-IDS encode intrusion signatures or
scenarios and scan for occurrences of these, which requires prior knowledge of the nature
of the intrusion. By contrast, in anomaly-IDS, it is assumed that the nature of the intrusion
is unknown, but that the intrusion will result in behavior different from that normally seen
in the system. Anomaly IDS use models of normal or expected behavior to monitor
systems; deviations from the normal model indicate possible intrusions. Some systems
incorporate both categories, a good example being NIDES, or Denning’s generic model
of an IDS [12].

Relatively few IDS deal with misuse intrusion detection. One type of implementation
uses an expert system to fit data to known intrusion signatures, for example, in
IDES/NIDES, or Stalker [37], knowledge of past intrusions is encoded by human experts
in expert system rules. Other approaches attempt to generate intrusion signatures
automatically, for example, one approach uses a pattern matching model based on colored
Petri nets [31] and [32], while USTAT [27] represents potential intrusions as sequences
of system states in the form of state transition diagrams.

Because of the diff iculty of encoding known intrusions, and the continual occurrence of
new intrusions, many systems focus on anomaly intrusion detection. A wide variety of
methods have been used. TRIPWIRE monitors the state of special files (such as the
/etc./hosts.equiv file on a UNIX system, or UNIX daemon binaries) for change;
normal is simply the static MD5 checksum of a file. A program specification language is
used in [30] to define normal for privileged programs in terms of the allowed operations
for that program. Rule-based induction systems such as TIM have been used to generate
temporal models of normal user behavior. Wisdom&Sense incorporates an unsupervised
tree-learning algorithm to build models of patterns in user transactions. Other systems,
such as NIDES, have employed statistical methods to generate models of normal user
behavior in terms of frequency distributions. NSM uses a hierarchical model in
combination with a statistical approach to determine network traff ic usage profiles. On
the biologically inspired side, connectionist or neural nets have been used to classify data
[21], and genetic programming has been proposed as a means of developing
classifications [10].
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3. Anomaly Intrusion Detection

The method we present here performs anomaly intrusion detection (although it could also
be used for misuse detection---see section 6). We build up a profile of normal behavior
for a program of interest, treating deviations from this profile as anomalies. There are two
stages to the anomaly detection: In the first stage we build up profiles or databases of
normal behavior (this is analogous to the training phase for a learning system); in the
second stage we use these databases to monitor process behavior for significant
deviations from normal (analogous to the test phase).

Recall that we have chosen to define normal in terms of short sequences of system calls.
In the interests of simplicity, we ignore the parameters passed to the system calls, and
look only at their temporal orderings. This definition of normal behavior ignores many
other important aspects of process behavior, such as timing information, instruction
sequences between system calls, and interactions with other processes. Certain intrusions
may only be detectable by examining these other aspects of process behavior, and so we
may need to consider them later. Our philosophy is to see how far we can go with the
simplest possible assumption.

3.1 Profiling Normal Behavior

The algorithm used to build the normal databases is extremely simple. We scan traces of
system calls generated by a particular program, and build up a database of all unique
sequences of a given length, k, that occurred during the trace. Each program of interest
has a different database, which is specific to a particular architecture, software version
and configuration, local administrative policies, and usage patterns. Once a stable
database is constructed for a given program, the database can be used to monitor the
ongoing behavior of the processes invoked by that program.

This method is complicated by the fact that in UNIX a program can invoke more than one
process. Processes are created via the fork system call or its virtual variant vfork. The
essential difference between the two is that a fork creates a new process which is an
instance of the same program (i.e. a copy), whereas a vfork replaces the existing
process with a new one, without changing the process ID. We trace forks individually and
include their traces as part of normal, but we do not yet trace virtual forks because a
virtual fork executes a new program. In the future, we will switch databases dynamically
to follow the virtual fork.

Given the large variabilit y in how individual systems are currently configured, patched,
and used, we conjecture that individual databases will provide a unique definition of
normal for most systems. We believe that such uniqueness, and the resulting diversity of
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systems, is an important feature of the immune system, increasing the robustness of
populations to infectious diseases [20]. The immune system of each individual is
vulnerable to different pathogens, greatly limiti ng the spread of a disease across a
population. Traditionally, computer systems have been biased towards increased
uniformity because of the advantages offered, such as portabilit y and maintainabilit y.
However, all the advantages of uniformity become potential weaknesses when errors can
be exploited by an attacker. Once a method is discovered for penetrating the security of
one computer, all computers with the same configuration become similarly vulnerable.

The construction of the normal database is best ill ustrated with an example. Suppose we
observe the following trace of system calls (excluding parameters):

open, read, mmap, mmap, open, read, mmap

We slide a window of size k across the trace, recording each unique sequence of length k
that is encountered. For example, if k == 3, then we get the unique sequences:

open, read, mmap
read, mmap, mmap
mmap, mmap, open
mmap, open, read

For eff iciency, these sequences are currently stored as trees, with each tree rooted at a
particular system call. The set of trees corresponding to our example is given in Figure 1.

open read mmap

read mmap mmap open

mmap mmap open read

Figure 1. An example of a forest of system call sequence trees.

We record the size of the database in terms of the number of unique sequences N, (in the
example just given, N == 4 ) so an upper bound on the storage requirements for the
normal database is (( ))O Nk . In practice, the storage requirements are much lower because
the sequences are stored as trees. For example, the sendmail database, which contains
1318 unique sequences of length 10, has 7578 nodes in the forest, where each node
corresponds to a system call . If we had a node for every single system call i n all 1318
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sequences, we would have 13180 nodes.

3.2 Measuring Anomalous Behavior

Once we have a database of normal behavior, we use the same method that we used to
generate the database to check new traces of behavior. We look at all overlapping
sequences of length k in the new trace and determine if they are represented in the normal
database. Sequences that do not occur in the normal database are considered to be
mismatches. By recording the number of mismatches, we can determine the strength of an
anomalous signal. Thus the number of mismatches occurring in a new trace is the
simplest determinant of anomalous behavior. We report these counts both as a raw
number and as a percentage of the total number of matches performed in the trace, which
reflects the length of the trace. Ideally, we would like these numbers to be zero for new
examples of normal behavior, and for them to jump significantly when abnormaliti es
occur.

We make a clear distinction here between normal and legal behavior. In the ideal case we
want the normal database to contain all variations in normal behavior, but we do not want
it to contain every single possible path of legal behavior, because our approach is based
upon the assumption that normal behavior forms only a subset of the possible legal
execution paths through a program, and unusual behavior that deviates from those normal
paths signifies an intrusion or some other undesirable condition. We want to be able to
detect not only intrusions, but also unusual conditions that are indicative of system
problems. For example, when a process runs out of disk space, it may execute some error
code that results in an unusual execution sequence (path through the program). Clearly
such a path is legal, but certainly it should not be regarded as normal.

If the normal database does contain all variations in normal behavior, then when we
encounter a sequence that is not present in the normal database, we can regard it as
anomalous, i.e. we can consider a single mismatch to be significant. In reality, it is li kely
to be impossible to collect all normal variations in behavior (these issues are discussed
more fully in sections 4 and 5), so we must face the possibilit y that a normal database
provides incomplete coverage of normal behavior. One solution is to count the number of
mismatches occurring in a trace, and only regard as anomalous those traces that produce
more than a certain number of mismatches. This is problematic however, because the
count is dependent on trace length, which might be indefinite for continuously running
processes.

An alternative is to constrain the measure locally. The anomalies we have studied are
temporally clumped: Anomalous sequences due to intrusions seem to occur in local
bursts. However, defining a local measure is diff icult because we have an unordered state
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space, i.e. we have no true notion of locality---how “close” one system call i s to another,
or how “close” one system call sequence is to another. We have chosen “Hamming
distance”3 between sequences as the measure. Although this choice is somewhat arbitrary,
it is related to how closely anomalies are clumped. We cannot theoretically justify this
measure, so we determine its worth empirically.

We use the “Hamming distance” between two sequences to compute how much a new
sequence actually differs from existing normal sequences. The similarity between two
sequences can be computed using a matching rule that determines how the two sequences
are compared. The matching rule used here is based on Hamming distance, i.e. the
difference between two sequences i and j is indicated by the Hamming distance (( ))d i j,
between them. For each new sequence i, we determine the minimal Hamming distance

(( ))d imin  between it and the set of normal sequences:

(( )) (( )){{ }}d i d i j jmin min ,==  for all normal sequences .

The dmin  value represents the strength of the anomalous signal, i.e. how much it deviates
from a known pattern. Note that this measure is not dependent on trace length and is still
amenable to the use of thresholds for binary decision making.

The various measures can be ill ustrated with a small example. Again, consider the trace
shown in the previous example:

open, read, mmap, mmap, open, read, mmap

that generated the normal database consisting of:

open, read, mmap
read, mmap, mmap
mmap, mmap, open
mmap, open, read

Now, if we have a trace in which one call (the sixth in the trace) is changed from read to
mmap:

open, read, mmap, mmap, open, mmap, mmap

                                                
3 Although we are not using a binary alphabet, the measure we use is analogous to a binary Hamming

distance, i.e. it is the number of positions in which the two sequences differ.
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then we will have the following new sequences:

mmap, open, mmap
open, mmap, mmap

This corresponds to 2 mismatches, which is 40% of the trace, and two dmin  values of 1.

These three different measures have different time-complexities. To determine that a new
sequence is a mismatch requires at most k −− 1 comparisons, because the normal
sequences are stored in a forest of trees, where the root of each tree corresponds to a
different system call . Similarly, it will t ake k −− 1 comparisons to confirm that a sequence
is actually in the normal database. If the sequence is not in the normal database, then
computing dmin  for that sequence is much more expensive. Because (( ))d imin  is the
smallest Hamming distance between i and all normal sequences, we have to check every
single sequence in normal before we can determine (( ))d imin , which will require a total of

(( ))N k −− 1  comparisons (recall that N is the number of sequences in the database).
However, we expect anomalies to be rare, so most of the time, the algorithm will be
confirming normal sequences, which is much cheaper to do. If our rate of anomalous to
normal sequences is RA , then the average complexity of computing (( ))d imin  per sequence

is ( ) ( )( )N k R k RA A− + − −1 1 1 , which is ( )( )O k R NA + 1 .

3.3 Classification Errors

An IDS using these measures will be making decisions based on the observed values of
the measures. In the simplest case, these are binary decisions: Either a sequence is
anomalous, or it is normal. With binary decision making, there are two types of
classification errors: False positives and false negatives. We define these errors
asymmetrically: A false positive occurs when a single sequence generated by legitimate
behavior is classified as anomalous; and a false negative occurs when none of the
sequences generated by an intrusion are classified as anomalous, i.e. when all of the
sequences generated by an intrusion appear in the normal database. In statistical decision
theory, false negatives and false positives are called type I and type II errors, respectively.

To detect an intrusion, at least one of the sequences generated by the intrusion must be
classified as anomalous. In terms of our measures, what we require is that at least one of
the sequences generated by the intrusion has dmin > 0. We measure the strength of the
anomaly by dmin , and because we want intrusions to generate strong anomalies, we
assume that the higher the dmin  the more likely it is that the sequence was actually
generated by an intrusion. In practice, we report the maximum dmin  value that was
encountered during a trace, because that represents the strongest anomalous signal found
in the trace, i.e. we compute the signal of the anomaly, S A , as:



12

(( )){{ }}S d i iA == max min  for all new sequences .

In our example above, S A == 1. Generally, we do not report the actual S A  value, but rather
the S A  value normalized over the sequence length k, to enable us to compare S A  values
for different values of k, i.e.:

�
S S kA A== .

Although we would like to minimize both kinds of errors, we are more willi ng to tolerate
false negatives than false positives. False negatives can be reduced by adding layers of
defense, whereas layering will not reduce overall false positive rates. A simple example
ill ustrates this. Consider a system with L layers of defense that an intruder must penetrate,
where at each layer there is a probabilit y pn  that the intruder will escape detection (i.e.
pn  is the false negative rate). If the probabilit y of detection is independent for each layer,
then the probabilit y that the intruder will penetrate all l ayers undetected is pn

L . So, in
this example, the overall false negative rate is exponentially reduced by adding layers of
protection (provided we have independence). By  contrast, if we assume that at each layer
we have an (independent) probabilit y p f  of generating a false positive, then the expected
number of false positives is p Lf . In this case layering compounds false positives.

False positives can be measured when we collect normal behavior in li ve environments
(see section 5). If we are collecting normal empirically, the occurrence of rare but
acceptable events could result in an incomplete normal database. If the normal were
incomplete, false positives could be the result, as we encounter acceptable sequences that
are not yet included in our normal database. To limit false positives, we set thresholds on
the ( )d imin  values, i.e. we regard as anomalous any sequence i for which

( )d i Cmin ≥ .

where 1≤ ≤C k  is the threshold value. To summarize, if a sequence i of length k is
suff iciently different from all normal sequences it is flagged as anomalous. The validity
of the assumption that intrusive behavior is characterized by increased Hamming distance
from normal sequences is tested empirically in the sections that follow.

4. Behavior in a Synthetic Environment

There are two methods for choosing the normal behavior that is used to define the normal
database: (1) We can generate a “synthetic” normal by exercising a program in as many
normal modes as possible and tracing its behavior; (2) we can generate a “real” normal by
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tracing the normal behavior of a program in a live user environment. A synthetic normal
is useful for replicating results, comparing performance in different settings, and other
kinds of controlled experiments. Real normal is more problematic to collect and evaluate
(these issues are discussed in section 5); however, we need real normal to determine how
our system is li kely to perform in realistic settings. For example, if we generate normal
synthetically we have no idea what false positive rates we will get in realistic settings
because our synthetic, by definition, includes all variations on normal behavior (although
not all variations on legal behavior). We could exclude some synthetically generated
traces from normal and see what false positives resulted, but it is not clear which traces to
exclude---the choice is arbitrary and the resulting false positives would be equally
arbitrary. In this section we present results using a synthetic normal; in section 5 we
present results using a real normal.

4.1 Building a Synthetic Normal Database

We studied normal behavior for three different programs in UNIX: sendmail, lpr and
wu.ftpd (the first two were running under SunOS 4.1.x, and the last one was running
under Linux). Sendmail is a program that sends and receives mail , lpr is a program
that enables users to print documents on a printer, and ftpd is a program for the transfer
of f iles between local and remote hosts. Because sendmail is the most complex of
these programs, we will briefly describe how we exercised sendmail to produce a
profile of normal behavior (the methods for constructing synthetic normal for the other
two programs are described in Appendix 2). We considered variations in message length,
number of messages, message content (text, binary, encoded, encrypted), message subject
line, who sent the mail , who received the mail , and mailers. In addition, we looked at the
effects of forwarding, bounced mail and queuing. Lastly, we considered the effects of the
origin of all these variations in the cases of remote and local delivery.

A suite of 112 artificially constructed messages was used to exercise sendmail (version
5), producing a trace of a combined length of over 1.5 milli on system calls. Table 1
shows how many messages of each type were used to generate the normal databases. We
began with message length, testing 12 different message lengths, ranging from 1 line to
300,000 bytes. From this, we selected the shortest length that produced the most varied
pattern of system calls (50,000 bytes), and then used that as the standard message length
for the remaining test messages. Similarly, with the number of messages in a sendmail
run, we first sent 1 message and traced sendmail, then we sent 5 messages, tracing
sendmail, and so forth, up to 20 messages. This was intended to test the response of
sendmail to bursts of messages. We tested message content by sending messages
containing ASCII text, uuencoded data, gzipped data, and a pgp encrypted file. In each
case, a number of variations was tested and the one that generated the most variations in
system call patterns was selected as a single default before moving on to the next stage.
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These messages constituted our corpus of normal behavior. We reran this set of standard
messages on each different operating system and sendmail.cf (the sendmail
configuration file) variant that we tried, thus generating a normal database that was
tailored to the exact operating conditions under which sendmail was running.

Of the features considered, the following seemed to have littl e or no effect: Number of
messages, message content, subject line, who sent the mail , who received the mail , mail
programs and queuing. Message length has a considerably different effect on the
sequence of system calls, depending on the message origin: Remote mail produces traces
of system calls that are proportional to the length of the message, with littl e sequence
variation in these traces; local mail produces traces that are roughly the same length,
regardless of the size of message, but the sequence of system calls used changes
considerably as the message size increases. In both cases, once a large enough message
size (50K) is used to generate normal, message size makes no difference. The effect of
forwarding mail on remote traces is negligible, whereas it has a small but noticeable
affect on local traces. Bounced mail had more of an effect remotely, but the effects are
still evident in the local case.

Type of Behavior #  of Mail Messages
message length 12
number of messages 70
message content 6
subject 2
sender/receiver 4
different mailers 4
forwarding 4
bounced mail 4
queuing 4
vacation 2
Total 112

Table 1. Number of messages of each type used to generate synthetic sendmail
normal. Each number in the table indicates the number of variants used, for
example, we used 12 different message lengths.

For each test, we generated databases for different values of k for each of the three
programs tested, i.e. sendmail, lpr and ftpd. The results for k == 10 are shown in
Table 2. Our choice of sequence length was determined by two conflicting criteria. On the
one hand we want a sequence length as short as possible to minimize the size of the
database and the computation involved in detection (recall that the time complexity of
detection is proportional to k). On the other hand, if the sequence length is too small we
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will not be able to discriminate between normal and anomalous behavior. Our choice of
10 is based on empirical observations (see section 4.2.2).

Program Database Size N

sendmail 1318
lpr 198
ftpd 1017

Table 2. Synthetic normal database size N for sequence length of 10, for sendmail,
lpr and ftpd.

These databases are remarkably compact, for example, the sendmail database contains
only 1318 unique sequences of length 10, which requires 9085 bytes to store in our
current implementation. sendmail is one of the most complex of the privileged
programs currently used in UNIX systems, and if its behavior can be described so
compactly, then we can expect that other privileged programs will have normals at least
as compact. The data are encouraging because they indicate that the range of normal
behavior of these programs is limited. Too much variabilit y in normal would preclude
detecting anomalies; in the worst case, if all possible sequences of length k show up as
legal normal behavior, then no anomalies could ever be detected.

How many possible sequences of length k are there? If we have an alphabet ∑∑  of system
calls, with size ∑∑ , then there are ∑∑ k

 possible sequences of length k. Choosing the
alphabet size can be problematic without knowing exactly which system calls are used by
sendmail, considering that there are a total of 182 system calls in the SunOS 4.1.x
operating system. As a conservative estimate, we assume that sendmail uses no more
than 53 calls (the number in the synthetic normal database), so, for k == 10 there are 5310 ,
or approximately 1017  possible sequences. Thus our sendmail normal database only
contains about 10 13−− percent of the total possible number of patterns. Of course, this is not
completely accurate, because the number of possible sequences that sendmail can
actually use is limited by the structure of the code. To determine this would require a
detailed analysis of the source code, which is precisely what we wish to avoid because
one of the strengths of our approach is that it does not require specialized knowledge of
any particular program.

4.2 Detecting Anomalous Behavior

Is intrusive behavior anomalous under this definition of normal? Ideally, we want most, if
not all , intrusive behavior to be anomalous. To test this, we compared the normal
databases against a range of known abnormal behavior.

In these experiments, we report the number of mismatches, the percentage of mismatches,
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and the normalized anomaly signal 
�
S A . Because 

�
S A  is not dependent on the length of the

trace, it is our preferred measure. However, 
�
S A  values are meaningful only in the context

of detection thresholds, and thresholds are dependent on the acceptable level of false
positives. Because of the way we constructed normal, we have zero false positives for
synthetic data; thus, in principle, any 

�
S A >> 0 indicates an anomaly (although our goal is

clear separation between the anomaly and normal, i.e. we want the 
�
S A  values to be large).

The issue of false positives in a real environment is explored in section 5.

4.2.1 Distinguishing Between Programs

The first experiments we performed compared sendmail with other UNIX programs. If
we could not distinguish between sendmail and other programs, then we would be
unlikely to detect small deviations in the behavior of a single program. We have done this
comparison for varying sequence lengths. When the sequence length is very low, ( k = 1),
there are very few mismatches, in the range of 0 to 7%. When the sequence length
reaches k = 30 there are 100% mismatches against all programs. Results of comparisons
for k == 10 are presented in Table 3.

Each program showed a significant number of anomalous sequences (at least 57%), and
at least one anomalous sequence is quite different from the normal sendmail
sequences, as evinced by 

�
S A , which is at least 0.6, indicating that the most anomalous

sequence differs from the normal sequences in over half of its positions. The programs
shown are distinct from sendmail because the actions they perform are considerably
different from those of sendmail. We also tested the normal database for lpr and
achieved similar results (data not shown). lpr exhibits even more separation than that
shown in Table 3, presumably because it is a smaller program with more limited
behavior. These results suggest that the behavior of different programs is easily
distinguishable using sequence information alone.
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Program Number Mismatches % Mismatches
�
S A

ls 42 75 0.6
ls -l 134 91 1.0
ls -a 44 76 0.6
ps 539 97 0.6
ps -ux 1123 99 0.6
finger 67 83 0.6
ping 41 57 0.6
ftp 271 90 0.7
pine 430 77 1.0

Table 3. Distinguishing sendmail from other programs. Each column reports
results for a single anomalous measures: Mismatches (column 2), percentage of
mismatches over a trace (column 3), and

�
S A  (column 4). The results shown are for a

sequence length of k == 10 . There are no mismatches against sendmail itself
because the database includes all variations.

4.2.2 Detecting Intrusions

The second set of experiments was to detect intrusions that exploit flaws in three
programs: sendmail, lpr and wu.ftpd. Some of the intrusions were successful, and
others unsuccessful because of updates and patches in software. We report results for
both. We would like to be able to detect most (if not all ) of these attempted intrusions,
even if they fail . Detection of failed intrusions would be a useful warning sign that an
attacker is attempting to break into a system. A third behavioral category that we would
like to be able to detect is the occurrence of error states, such as sendmail forwarding
loops. Although these error states are technically legal behavior, they are properly
regarded as abnormal because they indicate the existence of problems.

We compared system call traces for each of the three categories (successful exploits,
unsuccessful exploits and error conditions) with the normal database for the relevant
program and recorded the number of mismatches, percentage of mismatches over the
trace, and 

�
S A  values. Table 4 shows results for successful intrusions. Each row in the

table reports data for one typical trace. In most cases, we have conducted multiple runs of
the intrusion with identical or nearly identical results; where runs differed significantly,
we report a range of values. To date, we have collected data on five successful intrusions,
three of them for sendmail, one for lpr [4] and one for ftpd [8] CERT. swinstall
vulnerability. Ftp://info.cert.org/pub/ cert_advisories/ CA-96:27, December 1996.
[9]. The three sendmail intrusions were: sunsendmailcp [2], syslogd [3], [7],
and a decode alias intrusion. These intrusions are described in the appendix. Most of the
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successful intrusions are clearly detected, with 
�
S A  values of 0.5 to 0.7. The exception to

this is the decode intrusion, which, on the low end of the range, generates only 7
mismatches and a 

�
S A  value of 0.2. These results suggest approximate detection

thresholds that we would need in an online system to detect intrusions.

Anomaly Number Mismatches % Mismatches
�
S A

syslogd 248 - 529 17 - 30 0.7
sunsendmailcp 92 25 0.6
decode 7 - 22 1 - 2 0.2 - 0.5
lprcp 242 9 0.5
ftpd 496 38 0.7

Table 4. Detection of successful intrusions for sendmail, lpr and ftpd. The data
for the syslogd intrusion show the results of tracing sendmail (rather than
tracing syslogd itself). The three columns list the results for various anomalous
measures, from mismatches, percentage of mismatches over a trace, to 

�
S A . In some

cases the columns list a range of values, from minimum to maximum. The results
are for k == 10 .

The results for unsuccessful intrusions and error conditions are shown in Table 5. The
unsuccessful intrusions are based on attack scripts called sm565a and sm5x. SunOS 4.1.4
has patches that prevent these particular intrusions. Overall , these unsuccessful intrusions
are as clearly detectable as the successful intrusions. Error conditions are also detectable
within a similar range of 

�
S A  values. As a clear case of undesirable errors, we have

studied local forwarding loops in sendmail (see appendix for a description).

Anomaly Number Mismatches % Mismatches
�
S A

sm565a 54 22 0.6
sm5x 472 33 0.6
forward loop 21 - 108 10 - 18 0.4 - 0.6

Table 5. Detection of unsuccessful intrusions and error conditions for sendmail.
The three columns list the results for various anomalous measures, from
mismatches, percentage of mismatches over a trace, to 

�
S A . The results are for

k == 10 .

In summary, we are able to detect all the abnormal behaviors we tested against, including
successful intrusions, failed intrusion attempts, and unusual error conditions.

We have only reported results for k = 10 because experiments show that varying
sequence length has littl e effect on detection, in terms of the 

�
S A  measure. We analyzed

sequences of length k = 2 to k == 30. The minimum sequence length used was 2, because
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k = 1 will j ust give 
�
S A = 0 or 

�
S A = 1, which is not suff iciently informative. The

maximum sequence length used was 30 because the cost of computation scales with
sequence length. The results are reported in Figure 2. The decode intrusion is not
detectable for k << 6, but beyond this value of k, sequence length seems to make littl e
difference for 

�
S A . Sometimes an increased sequence length results in a decreased

anomaly signal. This could happen if the anomalies consisted of short clumps of system
calls separated by large gaps: As sequence length increases, longer sequences would be
more similar to normal sequences. For example, say we had a normal sequence open,
read, mmap, mmap, open, read, which an intrusion disrupted in the first three positions to
give close, close, close, mmap, open, read. Then k = 3 would give 

�
.S A = =3 3 10 (from

the first three system calls), and k = 6 would give 
�

.S A = =3 6 05. Figure 2 implies that
the best sequence length to use would be 6 or slightly larger than 6, because that will
allow detection of anomalies while minimizing computation, which is directly
proportional to k. We have chosen k = 10 because that gives a margin for error.
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Figure 2. 
�
S A  plotted against sequence length k. From this plot we infer that

sequence length makes little difference once we have a length of at least 6.

Considering only the three anomaly measures gives a limited picture of the sorts of
perturbations caused by intrusions and other unacceptable behaviors. For example, the�
S A  values indicate only the most anomalous sequence without giving any clear idea of
how anomalous sequences are temporally distributed. The anomaly profile in Figure 3
shows the temporal distribution of anomalous sequences for a successful sendmail
intrusion, one of the syslogd intrusion runs. From this figure we can see how
noticeable intrusions are, and how anomalies are clumped. It also indicates that if we
were doing real-time monitoring, we might be able to detect some intrusions before an
intruder gains access, right at the start of the intrusive behavior.
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Figure 3. Anomaly profile for a run of the syslogd intrusion. The data represents
a trace of system calls that is a concatenation of 5 forked sendmail processes. The�
S A  value for this intrusion is 0.7, i.e. the highest point reached on the y axis.

5. Behavior in a Real Environment

The results reported in section 4 were based on normal databases generated synthetically,
i.e. we attempted to exercise all normal modes of behavior of a given program and used
the resulting traces to build our normal databases. For an IDS that is deployed to protect a
functioning system, this may not be the best way to generate normal. The real normal
behavior of a given program on a particular machine could be quite different from the
synthetic normal. Some synthetic normal behaviors may be absent in an actual system; on
the other hand, the real normal might include behavior that we had not thought of, or
were unable to incorporate into the synthetic. In this section we attempt to build normal in
a real environment.

Several questions arise when we consider collecting real normal on a running system:

1. How do we ensure that we have not included abnormal sequences? That is, how do
we ensure that the system is not being exploited as we collect the normal traces?
Including abnormal sequences could result in false negatives.

2. How do we ensure that our normal is suff iciently comprehensive? How long do we
collect normal for? How much normal is enough? An incomplete normal could result
in false positives.

3. Are intrusions still detectable as we increase the size of the normal? As the size of
normal increases, we include rare normal sequences that could overlap more with
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abnormal sequences, thus reducing detection rates, i.e. increasing false negatives.

5.1 Collecting Real Normal

We have collected normal for lpr in two different real environments, at the
Massachusetts Institute of Technology’s Artificial Intelli gence laboratory (MIT), and at
the University of New Mexico’s Computer Science Department (UNM). In both cases,
we used a very simple solution to question 1 posed above: How do we ensure that
intrusive behavior is not included in these normals? For the lpr we have studied, we are
aware of only one intrusion (reported in section 4.2.2 above) which requires that lpr
generate a 1000 print jobs in close succession, which is something we as observers could
easily detect on a system that never generates more than 200 jobs in a day. This does not
guarantee that our normal is free of intrusion traces, but at least we have excluded the
intrusion against which we perform our analysis. In general, however, the problem will
not be so trivial, particularly if we do not know the nature of the intrusion beforehand, i.e.
if we are concerned with true anomaly detection. Possible ways of excluding intrusive
behavior from the normal trace include:

• Collect normal in the real, open environment, whilst monitoring the environment very
carefully to ensure that no intrusions have happened during our collection of normal.
This is what we did for lpr.

• Collect normal in an isolated environment where we are sure no intrusions can
happen. The disadvantage of this solution is that the normal will possibly be
incomplete, because the environment is of necessity limited, particularly in the case of
programs, such as sendmail, that communicate with the outside world.

In the MIT environment, we traced lpr running on 77 different hosts, each running
SunOS, for two weeks, to obtain traces of a total of 2766 print jobs. The growth of the
size N of the normal database is shown in Figure 4. As more print jobs are traced and the
traces added into normal, so the number of unique sequences N in the normal database
grows. Initially, the growth is very rapid, but then tapers off , in particular, for k == 6 and
k == 10, there is minimal database growth past 1000 print jobs. This reinforces the idea of
choosing as short a sequence length as possible, because we can accumulate the full range
of normal sequences much more rapidly for short sequences. We regard Figure 4 as
promising, because it indicates that normal behavior is limited and can be collected in a
short period of time (depending on how much the system is used).
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Figure 4. Growth of database size for lpr real normal collected at MIT. The x axis
indicates the number of print jobs traced, and the y axis indicates the number of
unique sequences N in the normal database.

How much does normal vary between different environments? We have some answers in
the case of lpr because we have two normals collected independently at MIT and UNM,
for the identical program and operating system. These represent considerably different
environments, as can be seen from the differences listed in Table 6, for example, we
traced lpr on only one host at UNM, whereas we traced it on 77 hosts at MIT. Despite
the differences in environment, the patterns of database growth in the UNM environment
are similar to those at MIT (data not shown), although the resulting database sizes are
different: 569 unique sequences for UNM and 876 for MIT. These databases not only
differ in size, but also in content: For example, a comparison of the unique sequences in
both databases for k == 6 indicates that only 141 of the sequences are the same between
the databases, which represents 40% of the UNM database and 29% of the MIT database.
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UNM MIT
Number of hosts 1 77
Number of print jobs 1234 2766
Time period (weeks) 13 2
DB Size N 569 876
Detection of lprcp:

# mismatches 11009 11006
% mismatches 7 7�
S A 0.4 0.4

Table 6. Comparison of lpr normals collected at MIT and at UNM. These results
are for k = 10 .

Although these databases are very different, they both detect the lprcp intrusion almost
identically. When we analyze the anomalous sequences generated by the intrusion, we
find that there are 16 unique anomalous sequences detected by the UNM database, which
are identical to 16 of the 17 unique anomalous sequences detected by the MIT database,
i.e. the anomaly is almost identical for both databases. This suggests that intrusion
signatures could be encoded in sequences of system calls, i.e. the system call signature
could be the basis of a misuse-IDS, or an IDS that does both anomaly and misuse
detection (for a further exploration of these ideas see [38]).

5.2 How much Normal is enough?

This section addresses questions 2 and 3 posed above: How much normal is enough?
And, are intrusions still detectable as the size of normal increases? In our experiments we
used the lpr data we collected in the real environments at MIT and UNM. In both cases,
we divided the set of data into two, the first set is used as the training set, and the second
set as the test set. The training data are used to build up a normal database, and the test
data are scanned using this normal database (we explain below how we choose the test
and training sets). A false positive is then any sequence i in the test set for which

( )d i Cmin ≥ .

We determine the lowest false positive rate εε fp  by setting the threshold C to be the
maximum value needed for the normal database to detect the lprcp intrusion. Because
we only have one intrusion to test against, and we set the threshold so that we always
detect it, we have zero false negatives. The false positive rate is simply the number of
false positives per print job.

The expected false positive rate was calculated using the bootstrap technique, which is a
procedure for estimating (approximating) the distribution of a statistic from a random
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sample [14]. We divided the jobs into test and training sets as follows: up to 700 jobs
were chosen randomly with replacement for the training set, and the remaining jobs were
used for the test set (thus we had a test set of 2066 jobs for MIT and one of 534 jobs for
UNM). This process was repeated 100 times to get the bootstrap estimate. The bootstrap
is applicable here because the data appear to be stationary. We checked for stationarity by
sampling the jobs both randomly, and in small chronologically consecutive groups, and
comparing the means produced by the two sampling methods. A two-tailed, two sample t-
test between these two samples gives a P-value of 0.19. Thus the probabilit y that these
means are different is insignificant.

The expected false positive rates and standard deviations are shown in Figure 5 for
varying sizes of the normal database. The data shown are for the MIT lpr, with k = 10,
and C = 4. Similar results were obtained with the lpr data collected at UNM (data not
shown).
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Figure 5. Bootstrap estimate of change in expected false positive rate as normal
database size increases.

To summarize, the lowest expected false positive rate in Figure 5 is 001 0004. .± . This is
about 1 false positive in every 100 jobs, or, on the MIT system, an average of 2 false
positives per day. This rate was computed for a normal database of 700 jobs, with 2066
jobs in the test set. From Figure 5 the false positive rate appears to be leveling off .
However, when we increase the size of the normal database to 1400 jobs (not shown in
the figure), with a test set of 1366 jobs, the rate drops to 0005 0002. .± , which is one false
positive per day. We are hesitant to draw too many conclusions from these data because
they are derived from a single program for which we have only one true positive (an
intrusion), and so we cannot get an accurate measure of false negatives, or the false



25

positive rate we could expect if we had to detect several different intrusions. Furthermore,
although we have done tests to check for stationarity, we cannot be absolutely sure that
there are no time-dependent effects in the data.

If we build the normal database chronologically from the first 700 jobs and compare that
to the remaining 2066 jobs, we get a false positive rate of 0.004 for a sequence length of
10. Although this is within the bootstrap distribution, there is a probabilit y of only 0.05 of
getting a false positive rate that low when the jobs are randomly selected. So it may be
that there are temporal dependencies not detected by our tests for stationarity. In an on-
line system, normal would be constructed from the first jobs encountered, and so in this
case we could expect lower false positive rates.

It is worth noting that these false positive rates are computed for a system in which we
have only spent 3 or 4 days collecting normal behavior. Provided the size of the normal
database does not grow indefinitely, we could expect our false positive rates to reduce as
we spend more days on normal collection. This is ill ustrated by the fact that when we
increase the size of the normal database to include 1400 jobs (7 days), our false positive
rate halves. Furthermore, even if we use all of the normal behavior traced over two weeks
to build the normal database, the threshold for detection of the lprcp intrusion does not
drop (see Table 6).

5.3 Analysis of False Positives

We looked at the sequences which were responsible for the false positives to get an idea
of what could be causing rare but acceptable behavior. We investigated several false
positives and found unusual circumstances behind all of them, including:

1. Trying to print on a machine where the file /dev/printer did not exist. This file
is a named local socket that connects to lpd running on the machine. Apparently
lpr would place a job in the queue, but could not communicate with lpd. It is
unclear whether lpd indicated an error. It is likely that the job did not print.

2. Printing from symbolic links. lpr was told to print a file in the current directory
using the -s flag.  It seems that the file to be printed was actually a symbolic link to
another file, so lpr followed the symbolic link to the original file, and then placed a
symbolic link to the real file in the spool directory.

3. Printing from a separately administered machine with a very different configuration.
4. Trying to print a job so large that lpr ran out of disk space for the log file.

When the normal database is built chronologically, there are only 6 false positives, 3 of
which are caused by the first case (1) above, and 3 of which are caused by the second case
(2).
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Are these really false positives? A false positive is some sort of acceptable behavior that
is classified as anomalous. If the behavior is unacceptable, even if it is not caused by an
intrusion, we would want to know about it, because it indicates that the system is not
functioning properly or eff iciently. Points 1 and 4 above are both instances of irregular
behavior symptomatic of a problem with the system; both indicate conditions that need to
be rectified. In this sense, neither 1 nor 4 are false positives. This kind of analysis
indicates that our actual false positive rate is lower than the reported values, for example,
in the case of a chronological normal, the number of false positives would be reduced
from 6 to 3.

6. Discussion

The previous two sections have presented evidence that short sequences of system calls
are good discriminators between normal and abnormal operating characteristics of several
common UNIX programs. In essence, we have found a regularity in executing programs
that is highly li kely to be perturbed by intrusive activities. These results are interesting for
several reasons: They suggest a possible implementation path for a lightweight intrusion-
detection system; the techniques might be applicable to security problems in other
computational settings; they ill ustrate the value of studying the empirical behavior of
actual systems; and they suggest a strategy for approaching other on-line problems in
computing that are not well solved by conventional methods.

Although the results presented in Sections 4 and 5 are suggestive, much more testing
needs to be completed to validate the approach.  In particular, extensive testing on a wider
variety of UNIX programs being subjected to large numbers of different kinds of
intrusions is desirable.  For each of these programs, we would ideally li ke to have results
both in controlled environments (in which we could run large numbers of intrusions) and
in live user environments. Overall , we expect that discrimination will be more diff icult in
highly stressed environments (high user loads, overloaded networks, etc.) in which many
exceptional conditions are raised. Furthermore, we would like to test these ideas in
different operating systems, such as Windows NT. Recently, we have successfully
detected intrusions in two other programs: a buffer overflow in the xlock program
running in Linux, and a symbolic link vulnerabilit y in the swinstall program running
under HP-UX [8]4.

However, there are some logistical problems associated with collecting data in li ve user
environments. Most operating systems are not shipped with robust tracing faciliti es, and

                                                
4 This data was collected by Mark Crosbie, at Hewlett Packard.
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as much as possible, we would like to collect data in standardized environments. It is
diff icult to justify installi ng code with known vulnerabiliti es (needed to run large
numbers of different intrusions) in a production environment, thus putting the user
community at risk of real intrusions. Finally, there are no obvious stopping criteria.
Every system is slightly different---when can we say that we have collected enough data
on enough different programs in enough different environments?

Assuming that more detailed experiments confirm our results, there are a host of systems-
engineering questions that need to be addressed before an IDS based on these principles
could be implemented and deployed. First, what combination of synthetic and actual
behavior should be collected to define a normal database? In many user environments,
certain (legitimate) features of programs might be seldom used, and so a database
generated from live user traces might generate false positives, whereas constructing a
synthetic database appropriately could prevent these false positives. It would also be
much easier to distribute an IDS that did not require a lot of customization at the time it is
installed---an IDS should make systems administration easier not harder. Thus, the
collection of real usage data at install -time would have to be highly automated. A related
complication is how to guarantee that no intrusions take place during the collection of
normal behavior. Second, which UNIX programs should be monitored, and how (and
when) should databases be switched when different processes are started? We could use a
completely different database for each program---earlier we emphasized that normal
behavior for different programs is significantly different (ranging from 40% to 80%).
However, these percentages also imply that there is much behavior in common between
different programs, and so in a running implementation we might be able to reduce
resource requirements by exploiting this commonality. Finally, we envision our IDS as a
real-time, on-line system that could potentially discover and interrupt some intrusions
before they were successful. The feasibilit y of this is highly dependent on eff icient design
and implementation of both the tracing facility and the algorithms that detect mismatches.

Our emphasis has been on determining if our approach can be successful at all . We were
not too concerned with eff iciency issues in this paper. However, for the system to be able
to detect intrusions in real-time---as they are happening---will require careful attention to
eff iciency issues. As a first step towards this we have analyzed the complexity of our
algorithm, although we have not been able to measure its eff iciency in a production
environment. Should the implementation prove too ineff icient, there are numerous
simpli fications we could experiment with, such as looking only at specific kinds of calls,
or only at every tenth call, etc.

An important question in the context of an IDS is what response is most appropriate once
a possible intrusion has been detected. This is a deep topic and largely beyond the scope
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of our paper. Most IDS respond by sending an alarm to a human operator. In the long run,
however, we believe that the response side will have to be largely automated if IDS
technology is going to be widely deployed. We have some evidence that intrusions
generate highly regular signatures, so it might be possible to store these signatures for
known intrusions and respond more aggressively when those signatures are detected.
Then for new anomalies more cautious actions could be taken. One advantage of
monitoring at the process level is that a wide range of responses is possible, ranging from
shutting down the computer completely (most radical) to simply running the process at
lower priority.

The method we propose is not a panacea---it will certainly miss some forms of intrusions.
One example is race condition attacks, which typically involve stealing a resource (such
as a file) created by a process running as root, before the process has had a chance to
restrict access to the resource. If the root process does not detect an unusual error state, a
normal set of system calls will be made, defeating our method. Other examples of
intrusions that would be missed are password hijacking (when one user masquerades as
another), and cases in which a user violates policy without using privileged processes.

The idea of looking at short sequences of behavior is quite general and might be
applicable to several other security problems. For example, people have suggested
applying the technique to several other computational systems, including: The Java
virtual machine, the CORBA distributed object system, security for ATM switches, and
network security. For each of these potential applications, it would be necessary first to
determine empirically whether simple definitions (analogous to sequences of system
calls) give a clear and compact signature of normal behavior, and then to determine if the
signature is perturbed by intrusive behavior.

Our approach is similar to several other approaches, although the differences are criti cal.
Ko et al [30] have also chosen the level of privileged processes, but they characterize the
behavior of a privileged process by a program specification or policy, which is a
description of what the program should be able to do. This policy is derived from the
program code and so requires specialized knowledge of program function. Writing a
policy can be prone to the same sorts of errors as writing the program, i.e. it is hard to
guarantee correctness. Most importantly, from our perspective, such a policy could easily
include behavior that is legal but not normal because it is hard to determine beforehand
what behavior should be normal. We avoid these issues by treating the program as a black
box, and relying purely on empirical observation to ascertain program behavior. Another
key difference is that we rely exclusively on sequencing information, unlike the
specification approach, which monitors individual operations. However, there are other
approaches, such as TIM [39], that consider sequencing information. These differ from
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our approach in that they look at the domain of user behavior, and use a probabiliti stic
approach for detecting anomalies. Because our results are suff iciently promising the
added complexity of using probabiliti es seems unnecessary. It is possible that our simple
deterministic approach is successful because our data is well -structured. If this is the case,
it may well be that probabiliti es are necessary in less structured domains, such as user
behavior.

In earlier papers, we have advocated a comprehensive approach to computer security
based on a collection of organizing principles derived from our study of the immune
system [38]. The immune-system perspective has certainly influenced many of our design
decisions, but in this paper we are emphasizing concrete computational mechanisms and
largely ignoring the immune system connection. Details of how our approach to IDS fits
into the overall immune-system vision are given in [17]. Extensions are suggested by
analogy.

An important bias underlying our approach is that modern computers are "complex
systems" in the sense that they are comprised of a large number of components, many of
which interact nonlinearly. These components are continually evolving, as well as the
environments in which they are embedded, their users, and the programmers who
implement them. This complexity threatens to overwhelm design strategies based on
functional decomposition. Furthermore, it implies that although we design and build
computers, we do not necessarily understand how they behave. An example of this is the
fact that the normal behavior of a highly complex program such as sendmail can be
captured by such a small number of system call sequences---it would have been hard to
predict this. Rather than making assumptions about how we believe that programs or
users will behave, or trying to prespecify their behavior (and being surprised), this paper
asks the question: What behavior do we observe? That is, we take existing artifacts and
study their behavior rigorously. Although such an approach might be dismissed as
"merely empirical" rather than theoretical, our point is that we need to spend more time
asking to what extent our existing theories describe our existing artifacts.

7. Conclusions

We presented a method for anomaly intrusion detection at the process level. Normal was
defined in terms of short sequences of system calls executed by running privileged
processes. Our profiles of normal behavior, which consisted of unique sequences of
length 10, were remarkably compact, for example, the sendmail database contained
only 1318 such sequences. Three measures were used to detect abnormal behavior as
deviations from profiles of normal. These measures allowed us to successfully detect
several classes of abnormal behavior, including: Intrusions in the UNIX programs
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sendmail, lpr and ftpd; failed intrusion attempts against sendmail; and error
conditions in sendmail. We studied two different methods of accumulating normal
profiles: Generating normal synthetically by attempting to exercise the program in as
many modes of normal operation as possible, and tracing a process in a live user
environment. In the latter case we have analyzed the data for false positives. Our false
positive rates for lpr were about 1 in every 100 print jobs (and explainable in terms of
system problems), but these results are tentative because we did not have suff icient data
for a comprehensive analysis. In future we intend to expand our base of intrusions and
gather more data for more programs running in real environments, so we can get more
realistic estimates of false positive and false negative rates.
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Appendix 1: Description of Intrusions

This appendix gives more detailed descriptions of intrusions and error conditions that we
tested against.

• sunsendmailcp: The sunsendmailcp script uses a special command line option to
cause sendmail to append an email message to a file. By using this script on a file
such as /.rhosts, a local user may obtain root access.

• syslogd: The syslogd attack uses the syslog interface to overflow a buffer in
sendmail. A message is sent to the sendmail on the victim machine, causing it
to log a very long, specially created error message. The log entry overflows a buffer in
sendmail, replacing part of the sendmail’s running image with the attacker's
machine code. The new code is then executed, causing the standard I/O of a root-
owned shell to be attached to a port. The attacker may then attach to this port at his or
her leisure. This attack can be run either locally or remotely; we have tested both
modes. We also varied the number of commands issued as root after a successful
attack.

• decode: In older sendmail installations, the alias database contains an entry called
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“decode,” which resolves to uudecode, a UNIX program that converts a binary file
encoded in plain text into its original form and name. uudecode respects absolute
filenames, so if a file “bar.uu” says that the original file is “ /home/foo/.rhosts” then
when uudecode is given “bar.uu” , it will attempt to create foo’s .rhosts file.
sendmail will generally run uudecode as the semi-privileged user daemon, so
email sent to decode cannot overwrite any file on the system; however, if the target
file happens to be world-writable, the decode alias entry allows these files to be
modified by a remote user.

• lprcp: The lprcp attack script uses lpr to replace the contents of an arbitrary file
with those of another. This attack exploits the fact that older versions of lpr use only
1000 different names for printer queue files, and they do not remove the old queue
files before reusing them. The attack consists of getting lpr to place a symbolic link
to the victim file in the queue, incrementing lpr’s counter 1000 times, and then
printing the new file, overwriting the victim file’s contents.

• ftpd: This is a configuration problem. Wu.ftpd is misconfigured at compile time,
allowing users SITE EXEC access to /bin. Users can then run executables such as
bash with root privilege.

• unsuccessful intrusions: sm5x, sm565a.
• forwarding loops: A local forwarding loops occurs in sendmail when a set of

$HOME/.forward files form a logical circle. We considered the simplest case, with
the following setup:

Email address .forward file
foo@host1 bar@host2
bar@host2 foo@host1

Appendix 2: Synthetic Normal Generation

This appendix describes briefly how synthetic normals were generated for ftpd and
lpr.

The synthetic ftpd was generated by tracing the execution of ftpd, using every option on
the ftpd man page at least once.

The synthetic lpr was generated by tracing the following types of lpr jobs: Printing a
text file, printing a postscript file, attempting to print a nonexistent file, printing to several
different printers, printing with and without burst pages, printing with symbolic links (the
-s option).
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8. Revisions made to the Paper

We list all of the major changes here, indexed by section and, where appropriate, the
number of the paragraph within the section. We also indicate the page numbers of the
changes.

Title.
Changed the title on page 1 to:
“Intrusion Detection using Sequences of System Calls”

Section 1.
Modified paragraph 2 on page 2:
“There are many different levels on which an IDS can monitor system behavior. It is
criti cal to profile normal behavior at a level that is both robust to variations in normal and
perturbed by intrusions. In the work reported here, we chose to monitor behavior at the
level of privileged processes. Privileged processes are running programs that perform
services (such as sending or receiving mail ), which require access to system resources
that are inaccessible to the ordinary user. To enable these processes to perform their jobs,
they are given privileges over and above those of an ordinary user (even though they can
be invoked by ordinary users). In UNIX, processes usually run with the privileges of the
user that invoked them. However, privileged processes can change their privileges to that
of the superuser by means of the setuid mechanism. One of the security problems with
privileged processes in UNIX is that the granularity of permissions is too coarse:
Privileged processes need superuser status to access system resources, but granting them
such status gives them more permission than necessary to perform their specific tasks
[30]. Consequently, they have permission to access all system resources, not just those
that are relevant to their operation. Privileged processes are trusted to access only relevant
system resources, but in cases where there is some programming error in the code that the
privileged process is running, or if the privileged process is incorrectly configured, an
ordinary user may be able to gain superuser privileges by exploiting the problem in the
program. For the sake of brevity, we usually refer to privileged processes (or programs)
simply as “processes” (or “programs”), and use the qualifier only to resolve ambiguities.”

Modified paragraph 3 on pages 2-3:
“ It is clear that privileged processes are a good level to focus on because exploitation of
vulnerabiliti es in privileged processes can give an intruder super-user status. Furthermore,
privileged processes constitute a natural boundary for a computer, especially processes
that listen to a particular port. In UNIX, privileged programs, such as telnetd and
logind, function as servers that control access into the system. Corruption of these



servers can allow an intruder to access the system remotely. Monitoring privileged
processes also offers some advantages over monitoring user behavior, which has been the
most common method to date (for example, see [5],[12],[26],[35],[39]). The range of
behaviors of privileged processes is limited compared to the range of behaviors of users;
privileged processes usually perform a specific, limited function, whereas users can carry
out a wide variety of actions. Finally, the behavior of privileged processes is relatively
stable over time, especially compared to user behavior. Not only do users perform a wider
variety of actions, but the actions performed may change considerably over time, whereas
the actions (or at least the functions) of privileged processes usually do not vary much
with time.”

Modified paragraph 4 on page 3:
“Our approach to detecting irregularities in the behavior of privileged programs is to
regard the program as a black box, which, when run, emits some observable. We believe
that this observable should be a dynamic characteristic of that program; although code
stored on disk may have the potential to do harm, it has to be actually running to realize
that potential. If we regard the program as a black-box, we do not need specialized
knowledge of the internal functioning or the intended role of the program; we can infer
these indirectly by observing its normal behavior. A natural observable for processes in
UNIX would be based on system calls, because UNIX processes accesses system
resources through the use of system calls. We have chosen short sequences of system
calls as our observable.”

Added paragraph 6 on pages 3-4:
“We want an IDS that is stable and lightweight (eff icient), all of which depends on the
discriminator (observable) that we use to distinguish between acceptable and
unacceptable behavior. By stable we mean that the discriminator reliably distinguishes
between acceptable and unacceptable behavior. Our approach is experimental because we
believe that current theories do not adequately describe how implemented systems really
run. In this paper we are primarily concerned with determining empirically if the
discriminator is stable. Eff iciency is a secondary consideration, and is addressed in this
paper to the extent that we analyze the complexity of our algorithm; however, we do not
report actual running times for the method on a production system. “

Removed the paragraph:
“One of our goals is lightweight intrusion detection. By lightweight we mean methods
that could be implemented in an IDS to run on-line, and that would use minimal
computing resources. Because an IDS is a preventative measure that does not enhance
system performance (quite the reverse), it is hard to justify the use of a computationally
expensive IDS. In many cases, if an IDS is not suff iciently lightweight, it simply will not



be used. Another advantage of having an IDS be suff iciently lightweight to run on-line is
the potential to detect intrusions in progress, perhaps to prevent the intrusion attempt
from succeeding.”

Section 3.1.
Added paragraph 2 on page 7:
“This method is complicated by the fact that in UNIX a program can invoke more than
one process. Processes are created via the fork system call or its virtual variant vfork.
The essential difference between the two is that a fork creates a new process which is an
instance of the same program (i.e. a copy), whereas a vfork replaces the existing
process with a new one, without changing the process ID. We trace forks individually and
include their traces as part of normal, but we do not yet trace virtual forks because a
virtual fork executes a new program. In the future, we will switch databases dynamically
to follow the virtual fork.”

Section 3.2.
Added paragraph 2 on page 9:
“We make a clear distinction here between normal and legal behavior. In the ideal case
we want the normal database to contain all variations in normal behavior, but we do not
want it to contain every single possible path of legal behavior, because our approach is
based upon the assumption that normal behavior forms only a subset of the possible legal
execution paths through a program, and unusual behavior that deviates from those normal
paths signifies an intrusion or some other undesirable condition. We want to be able to
detect not only intrusions, but also unusual conditions that are indicative of system
problems. For example, when a process runs out of disk space, it may execute some error
code that results in an unusual execution sequence (path through the program). Clearly
such a path is legal, but certainly it should not be regarded as normal.”

Added paragraph 4 on pages 9-10:
“An alternative is to constrain the measure locally. The anomalies we have studied are
temporally clumped: Anomalous sequences due to intrusions seem to occur in local
bursts. However, defining a local measure is diff icult because we have an unordered state
space, i.e. we have no true notion of locality---how “close” one system call i s to another,
or how “close” one system call sequence is to another. We have chosen “Hamming
distance” between sequences as the measure. Although this choice is somewhat arbitrary,
it is related to how closely anomalies are clumped. We cannot theoretically justify this
measure, so we determine its worth empirically.”



Section 3.3.
Modifed paragraph 2 on page 11:
“To detect an intrusion, at least one of the sequences generated by the intrusion must be
classified as anomalous. In terms of our measures, what we require is that at least one of
the sequences generated by the intrusion has dmin > 0. We measure the strength of the
anomaly by dmin , and because we want intrusions to generate strong anomalies, we
assume that the higher the dmin  the more likely it is that the sequence was actually
generated by an intrusion. In practice, we report the maximum dmin  value that was
encountered during a trace, because that represents the strongest anomalous signal found
in the trace, i.e. we compute the signal of the anomaly, S A , as:”

Added the last sentence to paragraph 5 on page 12:
“The validity of the assumption that intrusive behavior is characterized by increased
Hamming distance from normal sequences is tested empirically in the sections that
follow.”

Section 4.
Modified the fourth sentence of paragraph 1 on page 12-13:
“For example, if we generate normal synthetically we have no idea what false positive
rates we will get in realistic settings because our synthetic, by definition, includes all
variations on normal behavior (although not all variations on legal behavior).”

Section 4.1.
Modified paragraph 1 on page 13:
“We studied normal behavior for three different programs in UNIX: sendmail, lpr
and wu.ftpd (the first two were running under SunOS 4.1.x, and the last one was
running under Linux). Sendmail is a program that sends and receives mail , lpr is a
program that enables users to print documents on a printer, and ftpd is a program for the
transfer of f iles between local and remote hosts. Because sendmail is the most
complex of these programs, we will briefly describe how we exercised sendmail to
produce a profile of normal behavior (the methods for constructing synthetic normal for
the other two programs are described in Appendix 2). We considered variations in
message length, number of messages, message content (text, binary, encoded, encrypted),
message subject line, who sent the mail , who received the mail , and mailers. In addition,
we looked at the effects of forwarding, bounced mail and queuing. Lastly, we considered
the effects of the origin of all these variations in the cases of remote and local delivery.”

Section 4.2.2.
Modified paragraph 3 on pages 17-18:
We compared system call traces for each of the three categories (successful exploits,



unsuccessful exploits and error conditions) with the normal database for the relevant
program and recorded the number of mismatches, percentage of mismatches over the
trace, and 

�
S A  values. Table 4 shows results for successful intrusions. Each row in the

table reports data for one typical trace. In most cases, we have conducted multiple runs of
the intrusion with identical or nearly identical results; where runs differed significantly,
we report a range of values. To date, we have collected data on five successful intrusions,
three of them for sendmail, one for lpr [4] and one for ftpd [8] CERT. swinstall
vulnerability. Ftp://info.cert.org/pub/ cert_advisories/ CA-96:27, December 1996.
[9]. The three sendmail intrusions were: sunsendmailcp [2], syslogd [3], [7],
and a decode alias intrusion. These intrusions are described in the appendix. Most of the
successful intrusions are clearly detected, with 

�
S A  values of 0.5 to 0.7. The exception to

this is the decode intrusion, which, on the low end of the range, generates only 7
mismatches and a 

�
S A  value of 0.2. These results suggest approximate detection

thresholds that we would need in an online system to detect intrusions.

Modified the first and third rows of table 4 on page 18 :

Anomaly Number Mismatches % Mismatches
�
S A

syslogd 248 - 529 17 - 30 0.7
sunsendmailcp 92 25 0.6
decode 7 - 22 1 - 2 0.2 - 0.5
lprcp 242 9 0.5
ftpd 496 38 0.7

Added the fourth sentence to the caption of table 4 on page 18:
“ In some cases the columns list a range of values, from minimum to maximum.”

Modified the third row of table 5 on page 18:

Anomaly Number Mismatches % Mismatches
�
S A

sm565a 54 22 0.6
sm5x 472 33 0.6
forward loop 21 - 108 10 - 18 0.4 - 0.6

Section 5.1.
Added paragraph 3 on page 22:
“How much does normal vary between different environments? We have some answers
in the case of lpr because we have two normals collected independently at MIT and
UNM, for the identical program and operating system. These represent considerably
different environments, as can be seen from the differences listed in Table 6, for example,
we traced lpr on only one host at UNM, whereas we traced it on 77 hosts at MIT.
Despite the differences in environment, the patterns of database growth in the UNM



environment are similar to those at MIT (data not shown), although the resulting database
sizes are different: 569 unique sequences for UNM and 876 for MIT. These databases not
only differ in size, but also in content: For example, a comparison of the unique
sequences in both databases for k == 6 indicates that only 141 of the sequences are the
same between the databases, which represents 40% of the UNM database and 29% of the
MIT database.”

Section 5.3.
Added paragraph 3 on page 26:
“Are these really false positives? A false positive is some sort of acceptable behavior that
is classified as anomalous. If the behavior is unacceptable, even if it is not caused by an
intrusion, we would want to know about it, because it indicates that the system is not
functioning properly or eff iciently. Points 1 and 4 above are both instances of irregular
behavior symptomatic of a problem with the system; both indicate conditions that need to
be rectified. In this sense, neither 1 nor 4 are false positives. This kind of analysis
indicates that our actual false positive rate is lower than the reported values, for example,
in the case of a chronological normal, the number of false positives would be reduced
from 6 to 3.”

Section 6.
Added the last sentence to paragraph 2 on page 26:
“Recently, we have successfully detected intrusions in two other programs: a buffer
overflow in the xlock program running in Linux, and a symbolic link vulnerabilit y in
the swinstall program running under HP-UX.”

Added paragraph 5 on page 27:
“Our emphasis has been on determining if our approach can be successful at all . We were
not too concerned with eff iciency issues in this paper. However, for the system to be able
to detect intrusions in real-time---as they are happening---will require careful attention to
eff iciency issues. As a first step towards this we have analyzed the complexity of our
algorithm, although we have not been able to measure its eff iciency in a production
environment. Should the implementation prove too ineff icient, there are numerous
simpli fications we could experiment with, such as looking only at specific kinds of calls,
or only at every tenth call, etc.”

Added paragraph 9 on pages 28-29:
“Our approach is similar to several other approaches, although the differences are criti cal.
Ko et al [30] have also chosen the level of privileged processes, but they characterize the
behavior of a privileged process by a program specification or policy, which is a
description of what the program should be able to do. This policy is derived from the



program code and so requires specialized knowledge of program function. Writing a
policy can be prone to the same sorts of errors as writing the program, i.e. it is hard to
guarantee correctness. Most importantly, from our perspective, such a policy could easily
include behavior that is legal but not normal because it is hard to determine beforehand
what behavior should be normal. We avoid these issues by treating the program as a black
box, and relying purely on empirical observation to ascertain program behavior. Another
key difference is that we rely exclusively on sequencing information, unlike the
specification approach, which monitors individual operations. However, there are other
approaches, such as TIM [39], that consider sequencing information. These differ from
our approach in that they look at the domain of user behavior, and use a probabiliti stic
approach for detecting anomalies. Because our results are suff iciently promising the
added complexity of using probabiliti es seems unnecessary. It is possible that our simple
deterministic approach is successful because our data is well -structured. If this is the case,
it may well be that probabiliti es are necessary in less structured domains, such as user
behavior.”


