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A methodis introduced for deteding intrusions at the level of privileged
processs. Evidenceis given that short sequences of system cdls exeauted
by running programs are a good dscriminator between nama and
abnamal operating charaderistics of several common UNIX programs.
Normal behavior is colleded in two ways. Syntheticdly, by exercising as
many normal modes of usage of a program as possble, andin alive user
environment by traang the adual exeaution d the program. In the former
case several types of intrusive behavior were studied; in the latter case, we
analyze results were analyzed for false positives.

1. Introduction

Modern computer systems are plagued by seaurity vulnerabiliti es. Whether it is the latest
UNIX buffer overflow or bug in Microsoft Internet Explorer, ou applicaions and
operating systems are full of seaurity flaws on many levels. From the viewpoint of the
traditional seaurity paradigm, it shoud be possble to eiminate such problems through
more extensive use of formal methods and better software engineeing. This view rests on
several assumptions. That seaurity padicy can be eplicitly and corredly spedfied, that
programs can be rredly implemented, and that systems can be crredly configured.
Although these assumptions may be theoreticdly reasonable, in pradice nore of them
holds. Computers g/stems are nat static: They are continually changed by venda's, system
administrators, and wsers. Programs are added and removed, and configurations are
changed. Formal verification d a staticdly defined system is time-consuming and hard to
do corredly; forma verificaion d a dynamic system is impradicd. Withou formal
verificaions, tods such as encryption, access controls, firewalls, and audit trails all



bewme falli ble, making perfed implementation d a seaurity palicy impossble, even if a
corred palicy could be devised in the first place If we accet that our seaurity palicies,
our implementations, and ou corfigurations are flawed in pradice, then we must also
accet that we will have imperfed seaurity. We can incrementally improve seaurity
through the use of tods uch as Intrusion Detedion Systems (IDS). The IDS approach to
seaurity is based onthe asumption that a system will not be seaure, but that violations of
security policy (intrusions) can be detected by monitoring and analyzing system behavior.

There ae many different levels on which an IDS can monitor system behavior. It is
criticd to profile normal behavior at alevel that is both robust to variationsin namal and
perturbed by intrusions. In the work reported here, we dhose to monitor behavior at the
level of privileged processes. Privileged processes are running programs that perform
services (such as ending or recaving mail), which require accesto system resources
that are inaccessble to the ordinary user. To enable these processes to perform their jobs,
they are given privileges over and above those of an ardinary user (even though they can
be invoked by ordinary users). In UNIX, processes usually run with the privil eges of the
user that invoked them. However, privileged processes can change their privil eges to that
of the superuser by means of the setuid medanism. One of the seaurity problems with
privileged proceses in UNIX is that the granularity of permissons is too coarse:
Privileged processes neal superuser status to access ystem resources, bu granting them
such status gives them more permisson than necessary to perform their spedfic tasks
[30]. Consequently, they have permisgon to access all system resources, nd just those
that are relevant to their operation. Privileged processes are trusted to accessonly relevant
system resources, bu in cases where there is sme programming error in the cde that the
privileged processis running, or if the privileged processis incorredly configured, an
ordinary user may be ale to gain superuser privileges by exploiting the problem in the
program. For the sake of brevity, we usualy refer to privileged processes (or programs)
simply as “processes” (or “programs”), and use the qualifier only to resolve ambiguities.

It is clea that privileged processes are agood level to focus on kecaise exploitation o
vulnerabiliti esin privileged processes can give an intruder super-user status. Furthermore,
privileged processes constitute anatural boundary for a mwmputer, espeaally processes
that listen to a particular port. In UNIX, privileged programs, such as t el net d and
| ogi nd, function as rvers that control access into the system. Corruption d these
servers can alow an intruder to access the system remotely. Monitoring privil eged
processes also dff ers ome advantages over monitoring user behavior, which has been the
most common method to date (for example, see [5],[12],[26],[35],[39]). The range of
behaviors of privileged processs is limited compared to the range of behaviors of users;
privileged processes usually perform a spedfic, limited function, whereas users can cary
out a wide variety of adions. Finaly, the behavior of privileged processs is relatively



stable over time, espedally compared to user behavior. Not only do wsers perform awider
variety of adions, bu the adions performed may change cnsiderably over time, whereas
the adions (or at least the functions) of privileged processes usualy do nd vary much
with time.

Our approach to deteding irregularities in the behavior of privileged programs is to
regard the program as a black bax, which, when run, emits sme observable. We believe
that this observable shoud be adynamic dharaderistic of that program; athough code
stored on dsk may have the potential to do tarm, it has to be adually runnng to redize
that potential. If we regard the program as a blak-box, we do nd neal spedalized
knowledge of the internal functioning or the intended role of the program; we can infer
these indiredly by observing its normal behavior'. A natural observable for processs in
UNIX would be based on system calls, becaise UNIX processes accesses g/stem
resources through the use of system cdls. We have dhosen short sequences of system
calls as our observable.

In an ealier study we reported preliminary evidence that short sequences of system cdls
are agood simple discriminator for several types of intrusions [18]. The results reported
here extend the ealier study, with several important differences. First, we have dightly
changed how we record sequences of system cdls: Previously, we used look-aheal pairs,
with a look-aheal value of 6; here we use exad sequences of length 10. Consequently,
the database sizes reported here ae smaller than in the ealier study. Next, we have used
ameasure of anomalous behavior that is independent of tracelength (based onHamming
matches between sequences). Finaly, we have mlleded namal behavior in ared, live®
environment, and analyzed it for false positives.

We want an IDS that is dable and lightweight (efficient), al of which depends on the
discriminator (observable) that we use to dstinguish between accetable ad
unaccetable behavior. By stable we mean that the discriminator reliably distinguishes
between acceptable and uracceptable behavior. Our approacd is experimental becaise we
believe that current theories do nd adequately describe how implemented systems redly

! There ae other approaches that require knowledge of the internals and intended role of a program, most
notably the program spedfication method [30], which attempts to constrain the processin such a way that it
can perform only those operations that the program is designed to dg and no more, i.e. the method refines
the permissons dructure to acommodate spedfic privileged programs. The differences between our
method and this are discussed more fully in section 6.

2 We use the words “red” and “live” to refer to a production environment, i.e. an environment which is
currently in normal, everyday use. We mntrast thisto our “synthetic” environment, which is an isolated test
environment.



run. In this paper we ae primarily concerned with determining empiricdly if the
discriminator is dable. Efficiency is a seamndary consideration, and is addressed in this
paper to the extent that we analyze the complexity of our algorithm; however, we do nd
report actual running times for the method on a production system.

Our work is inspired by the defenses of natura immune systems. There ae compelling
simil arities between the problems facal by immune systems and by computer seaurity
[17]. Both systems must proted a highly complex system from penetration by inimicd
agents; to dothis, they must be ale to dscriminate between broad ranges of normal and
abnama behavior. In the immune system, this discrimination task is known as the
problem of distinguishing “self” (the harmlessmoleaules normally within the body) from
“norsalf” (dangerous pathogens and dher foreign materials). Discrimination in the
immune system is based on a daraderistic structure cdled a peptide (a short protein
fragment) that is both compad and unversa in the body. This limits the dfedivenessof
the immune system; for example, the immune system canna proted the body against
radiation. However, proteins are a omporent of all living matter, and generally differ
between self and norself, so they provide agood dstinguishing charaderistic. We view
our chosenliscriminator(short sequences of system calls) as analogous to a peptide.

The structure of this paper is as follows. In sedion 2we review related work in intrusion
detedion. Sedion 3 describes our method d anomaly intrusion detedion: First we
describe how to buld up pofiles of normal program behavior, and then we define three
ways of deteding anomalies. We then use the methodto buld a synthetic normal profile
in sedion 4, cgmonstrating its effedivenessat deteding intrusions and aher anomalies.
In sedion 5 we mnsider the @nsequences of colleding our normal data in orline,
functioning environments, discuss false positives, and present experimental results on
false positive rates. The limitations and implicaions of our approach are discussed in
sedion 6.A brief appendix is included which detail s the various intrusions that we used
in ou experiments, the methods we used to generate synthetic normal, and a brief
overview of UNIX.

2. Related Work

An Intrusion Detedion System (IDS) continuowsly monitors sosme dynamic behavioral
charaderistics of a computer system to determine if an intrusion hes occurred. This
definition excludes many useful computer seaurity methods. Seaurity analysis toadls, such
as SATAN [16] and COPS[15] are used to scan a system for weaknesses and passhble
seaurity holes. They are not IDS because they do nd monitor some dynamic charaderistic
of the system for intrusions or evidence of intrusions, rather they scan the system for
wed&knesses such as configuration errors or poa password choices that could lead to



intrusions. Other important nonIDS solutions to computer seaurity problems are
provided by cryptography [13], which is espedally useful for authenticaion and seaure
communicaions [36]. Virus protedion schemes such as that described in [28] are dso na
IDS under our definition, kecause they scan static code, na dynamic behavioral
charaderistics. Some gproadhes are not easily classfied, for example, integrity cheding
systems such as TRIPWIRE [29] monitor important fil es for changes that could indicae
intrusions. Although such files are static code, they become a dynamic charaderistic
indicative of intrusions when modified by intrusive adivities, and so TRIPWIRE could be
classified as an IDS.

There ae many different architedures for IDS. IDS can be centralized (i.e. processng is
performed ona single madine) or distributed acossmany madines. Almost al IDS are
centrali zed; the autonamous agents approach [10] is one of the few propacsed IDS that is
truly distributed. Furthermore, an IDS can be haost-based o network-based; the former
type monitors adivity onasingle computer, whereas the latter type monitors adivity over
a network. Network-based IDS can monitor information collated from audit trail s from
many diff erent hosts (multi-host monitoring) or they can monitor network traffic. NADIR
[26] and DIDs [25] are examples of IDS that do bdah multi-host and retwork traffic
monitoring; NSM [24] is an IDS that monitors only network traffic. Regardless of other
architedural considerations, any IDS must have three @mporents. Data olledion (and
reduction), data dasdficaion and data reporting. Data reporting is usually very simple,
with system administrators being informed of anomalous or intrusive behavior; few IDS
take it uponthemselvesto ad rapidly to ded with irregularities. Various methods for data
collection and classification are discussed below.

An IDS that monitors for intrusive behavior neeals to colled data on the dynamic state of
the system. Seleding a set of dynamic behavioral charaderistics to monitor is a key
design dedsion for an IDS, ore which will i nfluence the types of analyses that can be
performed and the amount of data that will be mlleded. Most systems (for example,
IDES/NIDES [34], [35], [5], Wisdom& Sense [33] and TIM [39]) colled profiles of user
behavior, generated by audit logs. Other systems look at network traffic, for example,
NSM and the system presented in [23]. Other approaches attempt to charaderize the
behavior of privileged processes, as in the program spedficaion method [30]. Different
behavioral charaderistics will generate diff erent amourts of data; as an extreme example,
systems monitoring user profil es processlarge volumes of raw data (an average user will
generate from 3 to 35MB of audit data per day [22]). In the latter case the data may nead
to be reduced to a manageable size.

Once abehaviora charaderistic is sleded, it is used to classfy data. In the simplest
case, thisisabinary deasion problem: The datais classfied as either normal (acceptable)



or anomalous (and passbly intrusive). Data dassficaion can be more complex, for
instance trying to identify the particular type of intrusion associated with anomalous
behavior. A plethora of methods have been used for data dassficaion, the majority of
them using artificial intelligence tedniques (see [22] for a detailed owerview).
Clasgficaion techniques can be divided into two caegories, depending on whether they
look for known intrusion signatures (misuse intrusion detection), or for anomalous
behavior (anomaly intrusion detection). Misuse-IDS encode intrusion signatures or
scenarios and scan for occurrences of these, which requires prior knowledge of the nature
of the intrusion. By contrast, in anomaly-IDS, it is assumed that the nature of the intrusion
isunknawvn, bu that the intrusionwill result in behavior different from that normally seen
in the system. Anomaly IDS use models of normal or expeded behavior to monitor
systems; deviations from the norma model indicate possble intrusions. Some systems
incorporate both caegories, a good example being NIDES, or Denning’'s generic model
of an IDS[12].

Relatively few IDS ded with misuse intrusion detedion. One type of implementation
uses an expert system to fit data to known intrusion signatures, for example, in
IDES/INIDES, or Stalker [37], knowledge of past intrusions is encoded by human experts
in expert system rules. Other approaches attempt to generate intrusion signatures
automaticdly, for example, ore goproad uses a pattern matching model based oncolored
Petri nets [31] and [32], while USTAT [27] represents patential intrusions as sequences
of system states in the form of state transition diagrams.

Because of the difficulty of encoding known intrusions, and the continual occurrence of
new intrusions, many systems focus on anomaly intrusion cetedion. A wide variety of
methods have been used. TRIPWIRE monitors the state of speda files (such as the
[ etc./ hosts. equiv fileonaUNIX system, or UNIX daenon knaries) for change;
normal is smply the static MD5 chedsum of afile. A program spedficaion language is
used in [30] to define normal for privileged programs in terms of the dlowed operations
for that program. Rule-based induction systems sich as TIM have been used to generate
temporal models of normal user behavior. Wisdom& Sense incorporates an ursupervised
treeleaning algorithm to buld models of patterns in user transadions. Other systems,
such as NIDES, have employed statisticd methods to generate models of normal user
behavior in terms of frequency distributions. NSM uses a hierarchicd model in
combination with a statisticd approach to determine network traffic usage profiles. On
the biologicdly inspired side, conredionist or neura nets have been used to classfy data
[21], and genetic programming has been propcsed as a means of developing
classificationg10].



3. Anomaly Intrusion Detection

The method we present here performs anomaly intrusion cetedion (although it could also
be used for misuse detedion---see sedion 6). We build up a profile of normal behavior
for aprogram of interest, treaing deviations from this profile & anomalies. There ae two
stages to the anomaly detedion: In the first stage we build up pofiles or databases of
normal behavior (this is analogous to the training phase for a leaning system); in the
semond stage we use these databases to monitor process behavior for significant
deviations from normal (analogous to the test phase).

Recdl that we have chasen to define normal in terms of short sequences of system cdls.
In the interests of simplicity, we ignore the parameters passd to the system cdls, and
look orly at their temporal orderings. This definition d norma behavior ignores many
other important aspeds of process behavior, such as timing information, instruction
sequences between system cdls, and interadions with ather processes. Certain intrusions
may only be detedable by examining these other aspeds of processbehavior, and so we
may need to consider them later. Our philosophy is to see how far we can go with the
simplest possible assumption.

3.1 Profiling Normal Behavior

The dgorithm used to buld the normal databases is extremely simple. We scan traces of
system cdls generated by a particular program, and buld up a database of al unique
sequences of a given length, k, that occurred duing the trace Each program of interest
has a different database, which is gedfic to a particular architedure, software version
and configuration, locd administrative padlicies, and usage patterns. Once a stable
database is constructed for a given program, the database can be used to monitor the
ongoing behavior of the processes invoked by that program.

This methodis complicaed by the fad that in UNIX a program can invoke more than ore
process Processs are aeded viathef or k system cdl or itsvirtual variant vf or k. The
esentia difference between the two is that af or k credes a new processwhich is an
instance of the same program (i.e. a @py), whereas a vf or k replaces the eisting
processwith anew one, withou changing the processID. We traceforks individually and
include their traces as part of normal, bu we do nd yet tracevirtua forks becaise a
virtual fork exeautes a new program. In the future, we will switch databases dynamicdly
to follow the virtual fork.

Given the large variability in how individual systems are aurrently configured, patched,
and wed, we onjedure that individual databases will provide aunique definition d
normal for most systems. We believe that such unqueness and the resulting diversity of



systems, is an important feaure of the immune system, increasing the robustness of
popdations to infedious diseases [20]. The immune system of ead indvidua is
vulnerable to dfferent pathogens, grealy limiting the spread of a disease agoss a
popdation. Traditionaly, computer systems have been hiased towards increesed
uniformity becaise of the alvantages offered, such as portability and maintainability.
However, al the alvantages of uniformity become patential weaknesses when errors can
be exploited by an attader. Once amethod is discovered for penetrating the seaurity of
one computer, all computers with the same configuration become similarly vulnerable.

The @nstruction d the normal database is best ill ustrated with an example. Suppcse we
observe the following trace of system calls (excluding parameters):

open, read, mmap, mmap, open, read, mmap

We dlide awindow of size k aaossthe trace recording ead urnique sequence of length k
that is encountered. For examplekit 3, then we get the unique sequences:

open, read, mmap
read, mmap, mmap
mmap, mmap, open
mmap, open, read

For efficiency, these sequences are arrently stored as trees, with ead treerooted at a
particular system call. The set of trees corresponding to our example is giigarl.

open read mmap

| | TN
re|ad mmap mmap open
mmap m|map o;|)en re|ad

Figure 1. An example of a forest of system call sequencetrees.

We reoord the size of the database in terms of the number of unique sequences N, (in the
example just given, N =4) so an uppx bound onthe storage requirements for the
normal database is O(Nk) . In pradice, the storage requirements are much lower because
the sequences are stored as trees. For example, the sendmail database, which contains
1318 umque sequences of length 10, les 7578 nods in the forest, where eat noce
corresponds to a system cdl. If we had a node for every single system cdl in all 1318



sequences, we would have 13180 nodes.

3.2 Measuring Anomalous Behavior

Once we have adatabase of normal behavior, we use the same method that we used to
generate the database to chedk new traces of behavior. We look at al overlapping
sequences of length kin the new trace ad determine if they are represented in the normal
database. Sequences that do nd occur in the normal database ae wnsidered to be
mismatches. By reaording the number of mismatches, we can determine the strength of an
anomalous sgnal. Thus the number of mismatches occurring in a new traceis the
simplest determinant of anomalous behavior. We report these courns both as a raw
number and as a percentage of the total number of matches performed in the trace which
refleds the length of the trace Idedly, we would like these numbers to be zero for new
examples of normal behavior, and for them to jump significantly when abnamaliti es
occur.

We make a tea distinction here between normal and legal behavior. In theided case we
want the normal database to contain all variationsin namal behavior, bu we do nd want
it to contain every single possble path of legal behavior, because our approach is based
upon the asumption that norma behavior forms only a subset of the possble legal
exeaution peths through a program, and unwsual behavior that deviates from thase normal
paths sgnifies an intrusion a some other undesirable mndtion. We want to be ale to
deted not only intrusions, bu also unwual condtions that are indicaive of system
problems. For example, when a processruns out of disk space it may exeaute some aror
code that results in an unwsual exeaution sequence (path through the program). Clealy
such a path ikgal, but certainly it should not be regardechasmal.

If the normal database does contain al variations in namal behavior, then when we
encourter a sequence that is not present in the normal database, we can regard it as
anomalous, i.e. we can consider a single mismatch to be significent. In redity, it is likely
to be impossble to collea al normal variations in behavior (these issues are discussed
more fully in sedions 4 and 5, so we must facethe possbility that a normal database
provides incomplete average of normal behavior. One solutionis to court the number of
mismatches occurring in atrace and ony regard as anomalous those traces that produce
more than a cetain number of mismatches. This is problematic however, becaise the
court is dependent on tracelength, which might be indefinite for continuowsly runnng
processes.

An alternative is to constrain the measure locdly. The anomalies we have studied are
temporally clumped: Anomaous squences due to intrusions em to occur in locd
bursts. However, defining alocd measure is difficult becaise we have an unadered state



space i.e. we have no true notion d locdity---how “close” one system cdl is to ancther,
or how “close” one system cdl sequence is to anather. We have caosen “Hamming
distance™ between sequences as the measure. Although this choiceis @mewhat arbitrary,
it is related to hav closely anomalies are dumped. We caina theoreticdly justify this
measure, so we determine its worth empirically.

We use the “Hamming distance” between two sequences to compute how much a new
sequence atualy differs from existing normal sequences. The similarity between two
sequences can be mmputed using a matching rule that determines how the two sequences
are ompared. The matching rule used here is based on Hamming distance i.e. the
diff erence between two sequences i and j is indicated by the Hamming distance dfi, j)
between them. For eat new sequence i, we determine the minimal Hamming distance
d,. (i) between it and the set of normal sequences:

d. ()= min{d(i, j) for all normal sequenc&j}.
The d,;, value represents the strength of the anomalous sgnal, i.e. hov much it deviates
from a known pettern. Note that this measure is not dependent on tracelength and is dill

amenable to the use of thresholds for binary decision making.

The various measures can be ill ustrated with a small example. Again, consider the trace
shown in the previous example:

open, read, mmap, mmap, open, read, mmap
that generated the normal database consisting of:

open, read, mmap

read, mmap, mmap

mmap, mmap, open

mmap, open, read

Now, if we have atracein which ore cdl (the sixth in the tracg is changed from real to
mmap:

open, read, mmap, mmap, opemap, mmap

3 Although we ae not using a binary alphabet, the measure we use is analogous to a binary Hamming
distance, i.e. it is the number of positions in which the two sequences differ.

1C



then we will have the following new sequences:

mmap, openmmap
open,mmap, mmap

This corresponds to 2 mismatches, which is 40% of the trace, andl jwealues of 1.

These threediff erent measures have diff erent time-complexities. To determine that a new
sequence is a mismatch requires aa most k-1 comparisons, becaise the normal
sequences are stored in a forest of trees, where the root of ead tree ©rresponds to a
different system cdl. Similarly, it will take k —1 comparisons to confirm that a sequence
is adualy in the normal database. If the sequence is nat in the normal database, then
computing d_. for that sequence is much more epensive. Becaise d_, (i) is the
smallest Hamming distance between i and al normal sequences, we have to ched every
single sequencein namal before we can determine d (i), which will require atotal of
N(k —1) comparisons (recdl that N is the number of sequences in the database).
However, we exped anomalies to be rare, so most of the time, the dgorithm will be
confirming normal sequences, which is much chegoer to do. If our rate of anomalous to
normal sequencesis R,, then the average complexity of computing d,;, (i) per sequence

is N(k-1R, +(k -1)(1- R,), which is O[k(R,N +1)).

3.3 Classification Errors

An IDS using these measures will be making dedsions based onthe observed values of
the measures. In the simplest case, these ae binary dedsions. Either a sequence is
anomalous, or it is normal. With binary dedsion making, there ae two types of
clasgficdion errors. False positives and fase negatives. We define these erors
asymmetricdly: A false positive occurs when a single sequence generated by legitimate
behavior is classfied as anomalous;, and a false negative occurs when none of the
sequences generated by an intrusion are dassfied as anomalous, i.e. when al of the
sequences generated by an intrusion appea in the normal database. In statisticd dedsion
theory, false negatives and false positives are called type | and type Il errors, respectively.

To deted an intrusion, at least one of the sequences generated by the intrusion must be
clasgfied as anomalous. In terms of our measures, what we require is that at least one of
the sequences generated by the intrusion hes d . > 0. We measure the strength of the
anomaly by d.,, and because we want intrusions to generate strong anomalies, we
asume that the higher the d ;, the more likely it is that the sequence was adualy
generated by an intrusion. In pradice, we report the maximum d,,, value that was
encourtered duing atrace becaise that represents the strongest anomalous sgna found
in the trace, i.e. we compute the signal of the anon®ly as:
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S, = max{dmin (i) for all new %quencesi} :

In our example owve, S, =1. Generdly, we do nd report the adual S, value, bu rather
the S, value normalized ower the sequence length k, to enable us to compare S, values
for different values ok, i.e.:

S, =S,/k.

Although we would like to minimize both kinds of errors, we ae more willi ng to tolerate
false negatives than false paositives. False negatives can be reduced by adding layers of
defense, whereas layering will not reduce overal false positive rates. A simple example
ill ustrates this. Consider a system with L layers of defense that an intruder must penetrate,
where & ead layer there is a probability p, that the intruder will escgpe detedion (i.e.
p, isthe false negative rate). If the probability of detedion is independent for ead layer,
then the probability that the intruder will penetrate dl |ayers undeteded is p,". So, in
this example, the overall false negative rate is exporentialy reduced by adding layers of
protedion (provided we have independence). By contrast, if we assume that at ead layer
we have an (independent) probability p, of generating afalse paositive, then the expeded
number of false positives i, L . In this case layering compounds false positives.

False pasitives can be measured when we olled normal behavior in live eavironments
(see sedion 5). If we ae mlleding normal empiricdly, the occurrence of rare but
accetable events could result in an incomplete normal database. If the normal were
incompl ete, false positives could be the result, as we encounter acceptable sequences that
are not yet included in ou normal database. To limit false positives, we set thresholds on
thed,, (i) values, i.e. we regard as anomalous any sequéocehich

d.(i)=C.

where 1< C <Kk is the threshold value. To summarize, if a sequence i of length k is
sufficiently different from all normal sequences it is flagged as anomalous. The validity
of the assumption that intrusive behavior is charaderized by increased Hamming distance
from normal sequences is tested empirically in the sections that follow.

4. Behavior in a Synthetic Environment

There ae two methods for choosing the normal behavior that is used to define the normal
database: (1) We can generate a ‘synthetic” normal by exercising a program in as many
normal modes as passhble and tradng its behavior; (2) we can generate a ‘red” normal by

12



tradng the normal behavior of a program in alive user environment. A synthetic normal
is useful for replicaing results, comparing performance in dfferent settings, and aher
kinds of controlled experiments. Red normal is more problematic to colled and evauate
(these iswues are discus=d in sedion 5); however, we need red normal to determine how
our system is likely to perform in redistic settings. For example, if we generate normal
syntheticdly we have no ideawhat fase paositive rates we will get in redistic settings
because our synthetic, by definition, includes al variations on namal behavior (athough
nat all variations on lega behavior). We ocould exclude some syntheticadly generated
traces from normal and seewhat false positives resulted, bt it isnot clea which traces to
exclude---the doice is arbitrary and the resulting false positives would be equaly
arbitrary. In this dion we present results using a synthetic normal; in sedion 5 we
present results using a real normal.

4.1 Building a Synthetic Normal Database

We studied namal behavior for threedifferent programsin UNIX: sendnai | , | pr and
wu. f t pd (the first two were running under SunOS 4.1Xx, and the last one was running
under Linux). Sendmai | is a program that sends and receves mail, | pr is a program
that enables users to print documents on a printer, andf t pd is a program for the transfer
of files between locd and remote hosts. Becaise sendmai | is the most complex of
these programs, we will briefly describe how we exercised sendnai | to produwce a
profile of normal behavior (the methods for constructing synthetic normal for the other
two programs are described in Appendix 2). We considered variations in message length,
number of messages, message cntent (text, binary, encoded, encrypted), message subjed
line, who sent the mail, who receved the mail, and mail ers. In addition, we looked at the
effeds of forwarding, bourced mail and queuing. Lastly, we considered the dfeds of the
origin of all these variations in the cases of remote and local delivery.

A suite of 112artificially constructed messages was used to exercise sendmai | (version
5), prodwcing a trace of a ambined length of over 1.5 million system cdls. Table 1
shows how many messages of ead type were used to generate the normal databases. We
began with message length, testing 12 dfferent message lengths, ranging from 1 line to
300,000 Wtes. From this, we seleded the shortest length that produced the most varied
pattern of system cdls (50,000 lytes), and then used that as the standard message length
for the remaining test messages. Simil arly, with the number of messagesin asendnai |

run, we first sent 1 message and traced sendmai | , then we sent 5 messages, traang
sendmai | , and so forth, upto 20 messages. This was intended to test the resporse of
sendnai | to busts of messages. We tested message @ntent by sending messages
containing ASCII text, uuencoded data, gzipped data, and a pgp encrypted file. In eat
case, a number of variations was tested and the one that generated the most variations in
system cdl patterns was ®leded as a single default before moving on to the next stage.
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These messages congtituted our corpus of normal behavior. We reran this st of standard
messages on ead dfferent operating system and sendnai | .cf (the sendmai |
configuration file) variant that we tried, thus generating a normal database that was
tailored to the exact operating conditions under whiehdmai | was running.

Of the feaures considered, the following seaned to have little or no effed: Number of
messages, message @ntent, subjed line, who sent the mail, who recaved the mail, malil
programs and queuing. Message length has a cnsiderably different effed on the
sequence of system cdl's, depending on the message origin: Remote mail produces traces
of system cdls that are propational to the length of the message, with littl e sequence
variation in these traces; locd mail produces traces that are roughly the same length,
regardless of the size of message, bu the sequence of system cdls used changes
considerably as the message size increases. In bah cases, orce alarge enough message
size (50K) is used to generate normal, message size makes no dfference The dfed of
forwarding mail on remote traces is negligible, whereas it has a small but noticedle
affed on locd traces. Bounced mail had more of an effed remotely, bu the dfeds are
still evident in the local case.

Type of Behavior # of Mail Messages
message length 12
number of messages 70
message content 6
subject 2
sender/receiver 4
different mailers 4
forwarding 4
bounced mail 4
gueuing 4
vacation 2
Total 112

Table 1. Number of messages of each type used to generate synthetic sendnai |
normal. Each number in the table indicates the number of variants used, for
example, we used 12 different message lengths.

For eat test, we generated databases for different values of k for ead o the three
programs tested, i.e. sendmai | , | pr and f t pd. The results for k =10 are shown in
Table 2. Our choice of sequence length was determined by two coniflicting criteria. On the
one hand we want a sequence length as short as possble to minimize the size of the
database and the computation involved in detedion (recdl that the time complexity of
detedion is propational to k). On the other hand, if the sequence length is too small we
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will not be ale to dscriminate between nama and anomalous behavior. Our choice of
10 is based on empirical observations (see seétih).

Program Database SizN
sendmail 1318
lpr 198
ftpd 1017

Table 2. Synthetic normal database size N for sequence length of 10, for sendmai | ,
| pr and ft pd.

These databases are remarkably compad, for example, the sendmai | database @mntains
only 1318 umque sequences of length 10, which requires 9085 lytes to store in ou
current implementation. sendmai | is one of the most complex of the privileged
programs currently used in UNIX systems, and if its behavior can be described so
compadly, then we can exped that other privileged programs will have normals at least
as compad. The data ae encouraging because they indicae that the range of normal
behavior of these programs is limited. Too much variability in namal would predude
deteding anomalies; in the worst case, if al possble sequences of length k show up as
legal normal behavior, then no anomalies could ever be detected.

How many possble sequences of length k are there? If we have an alphabet > of system
cdls, with size |S|, then there ae |3| possble sequences of length k. Choasing the
aphabet size can be problematic withou knowing exadly which system cdls are used by
sendmai | , considering that there ae atotal of 182 system cdls in the SunOS 4.1x
operating system. As a onservative estimate, we aume that sendnmai | uses no more
than 53cdls (the number in the synthetic normal database), so, for k = 10 there ae 53",
or approximately 10" possble sequences. Thus our sendmai | normal database only
contains abou 107 percent of the total passble number of patterns. Of course, thisis not
completely acarate, becaise the number of possble sequences that sendmai | can
adualy use is limited by the structure of the code. To determine this would require a
detalled analysis of the source @de, which is preasely what we wish to avoid becaise
one of the strengths of our approad is that it does nat require spedalized knowledge of
any particular program.

4.2 Detecting Anomalous Behavior

Isintrusive behavior anomalous under this definition d normal? Idedly, we want most, if
not al, intrusive behavior to be anomaous. To test this, we compared the normal
databases against a range of known abnormal behavior.

In these experiments, we report the number of mismatches, the percentage of mismatches,
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and the normali zed anomaly signal éA. Because éA is not dependent on the length of the
trace it is our preferred measure. However, éA values are meaningful only in the context
of detedion threshdds, and thresholds are dependent on the accetable level of false
positives. Because of the way we @nstructed namal, we have zero false positives for
synthetic data; thus, in principle, any éA > 0 indicates an anomaly (although ou god is
clea separation between the anomaly and namal, i.e. we want the éA valuesto belarge).
The issue of false positives in a real environment is explored in sé&ction

4.2.1 Distinguishing Between Programs

The first experiments we performed compared sendnai | with ather UNIX programs. If
we oud na distinguish between sendnai | and aher programs, then we would be
unlikely to deted small deviations in the behavior of asingle program. We have dore this
comparison for varying sequence lengths. When the sequencelength is very low, (k =1),
there ae very few mismatches, in the range of 0 to 7. When the sequence length
reades k = 30 there ae 100% mismatches against al programs. Results of comparisons
for k =10 are presented ihable3.

Eadh program showed a significant number of anomalous squences (at least 57%), and
a lesst one aomaous squence is quite different from the norma sendmai |
sequences, as evinced by éA, which is at least 0.6, indicding that the most anomalous
sequence differs from the normal sequences in over half of its positions. The programs
shown are distinct from sendmai | becaise the adions they perform are considerably
different from those of sendnmai | . We dso tested the normal database for | pr and
achieved similar results (data nat shown). | pr exhibits even more separation than that
shown in Table 3, presumably becaise it is a smaler program with more limited
behavior. These results suggest that the behavior of different programs is easily
distinguishable using sequence information alone.
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Program Number Mismatches % Mismatches éA
Is 42 75 0.6
Is -l 134 91 1.0
Is -a 44 76 0.6
ps 539 97 0.6
ps -ux 1123 99 0.6
finger 67 83 0.6
ping 41 57 0.6
ftp 271 90 0.7
pine 430 77 1.0

Table 3. Distinguishing sendmai | from other programs. Each column reports
results for a single anomalous measures. Mismatches (column 2), percentage of
mismatches over a trace (column 3), and éA (column 4). Theresults shown arefor a
sequence length of k =10. There are no mismatches against sendmai | itself
because the database includes all variations.

4.2.2 Detecting Intrusions

The second set of experiments was to deted intrusions that exploit flaws in three
programs. sendmai | , | pr andwu. f t pd. Some of the intrusions were successul, and
others unsuccessul becaise of updates and patches in software. We report results for
bath. We would like to be &le to deted most (if not all) of these d@tempted intrusions,
even if they fail. Detedion d failed intrusions would be auseful warning sign that an
attadker is attempting to bre& into a system. A third behaviora category that we would
like to be ale to deted is the occurrence of error states, such as sendnmai | forwarding
loops. Although these aror states are tedhnicdly legal behavior, they are properly
regarded as abnormal because they indicate the existence of problems.

We ompared system cdl traces for eaty o the three céegories (successul exploits,
unsuccesdul exploits and error condtions) with the normal database for the relevant
program and recorded the number of mismatches, percentage of mismatches over the
tracg and S, values. Table 4 shows resuits for successul intrusions. Each row in the
table reports data for one typicd trace In most cases, we have amndwcted multi ple runs of
the intrusion with identicd or nealy identicd results; where runs differed significantly,
we report arange of values. To date, we have olleded data on five succesul intrusions,
three of them for sendmai | , ore for | pr [4] and ore for ft pd [8] CERT. swinstall
vulnerability. Ftp://info.cert.org/pub/ cert_advisories/ CA-96:27, December 1996.

[9]. The threesendmai | intrusions were: sunsendmai | cp [2], sysl ogd [3], [7],
and a demde dias intrusion. These intrusions are described in the gpendix. Most of the
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successul intrusions are dealy deteded, with éA values of 0.5to 0.7.The exception to
this is the dewde intrusion, which, on the low end d the range, generates only 7
mismatches and a éA value of 0.2. These results suggest approximate detedion
thresholds that we would need in an online system to detect intrusions.

~

Anomaly Number Mismatches % Mismatches S,

syslogd 248 - 529 17-30 0.7
sunsendmailcp 92 25 0.6
decode 7-22 1-2 0.2-0.5

lprcp 242 9 0.5

ftpd 496 38 0.7
Table 4. Detection of successful intrusions for sendmai |, | pr and f t pd. The data

for the sysl ogd intrusion show the results of tracing sendmai | (rather than
tracing sysl ogd itself). The three columns list the results for various anomalous
measur es, from mismatches, per centage of mismatches over a trace, to éA. In some
cases the columns list a range of values, from minimum to maximum. The results
arefor k =10.

The results for unsuccessul intrusions and error condtions are shown in Table 5. The
unsuccesgul intrusions are based onattad scripts cdled sm565a and sm5x. SunOS 4.1.4
has patches that prevent these particular intrusions. Overall, these unsuccesgul intrusions
are & clealy detedable @ the successul intrusions. Error condtions are dso detedable
within a similar range of S, values. As a dea case of undesirable arors, we have
studied local forwarding loops sendnai | (see appendix for a description).

Anomaly Number Mismatches % Mismatches éA

sm565a 54 22 0.6
sm5x 472 33 0.6
forward loop 21 -108 10- 18 0.4-0.6

Table 5. Detection of unsuccessful intrusions and error conditions for sendmai | .
The three columns list the results for various anomalous measures, from
mismatches, percentage of mismatches over a trace, to S,. The results are for
k =10.

In summary, we ae aleto deted all the donamal behaviors we tested against, including
successful intrusions, failed intrusion attempts, and unusual error conditions.

We have only reported results for k =10 because eperiments sow that varying

sequence length hes little dfed on detedion, in terms of the éA measure. We analyzed
sequences of length k =2 to k = 30. The minimum sequence length used was 2, because
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k=1 will just give §,=0 or S, =1, which is not sufficiently informative. The
maximum sequence length used was 30 becaise the aost of computation scdes with
sequence length. The results are reported in Figure 2. The deade intrusion is naot
detedable for k <6, bu beyond this value of k, sequence length seans to make littl e
difference for éA. Sometimes an increased sequence length results in a deaeased
anomaly signal. This could happen if the anomalies consisted of short clumps of system
cdls sparated by large gaps: As fquence length increases, longer sequences would be
more similar to namal sequences. For example, say we had a normal sequence open,
read, mmap, mmap, open, read, which an intrusion dsrupted in the first threepositions to
give close, close, close, mmap, open, read. Then k =3 would give éA =3/3=10 (from
the first three system cdls), and k =6 would give éA =3/6=05. Figure 2 implies that
the best sequence length to use would be 6 o slightly larger than 6, kecause that will
adlow detedion d anomalies while minimizing computation, which is diredly
proportional tak. We have chosehk =10 because that gives a margin for error.
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Figure 2. éA plotted against sequence length k. From this plot we infer that
sequence length makes little differ ence once we have a length of at least 6.

Considering only the three aomaly measures gives a limited picture of the sorts of
perturbations caused by intrusions and aher unacceptable behaviors. For example, the
éA values indicate only the most anomalous squence withou giving any clea idea of
how anomalous ®quences are temporally distributed. The anomaly profile in Figure 3
shows the temporal distribution d anomalous sequences for a succesful sendnai |

intrusion, ore of the sysl ogd intrusion runs. From this figure we can see how
naticeale intrusions are, and hav anomalies are dumped. It also indicaes that if we
were doing red-time monitoring, we might be ale to deted some intrusions before an
intruder gains access, right at the start of the intrusive behavior.
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Figure 3. Anomaly profile for arun of the sysl ogd intrusion. The data represents
atrace of system callsthat is a concatenation of 5 forked sendmai | processes. The
éA valuefor thisintrusion is0.7, i.e. the highest point reached on they axis.

5. Behavior in a Real Environment

The results reported in sedion 4 were based onnormal databases generated syntheticdly,
i.e. we atempted to exercise dl normal modes of behavior of a given program and used
the resulting traces to buld ou normal databases. For an IDS that is deployed to proted a
functioning system, this may not be the best way to generate normal. The red normal
behavior of a given program on a particular machine could be quite different from the
synthetic normal. Some synthetic normal behaviors may be asent in an adual system; on
the other hand, the red norma might include behavior that we had na thought of, or
were unable to incorporate into the synthetic. In this dionwe atempt to buld namal in
a real environment.

Several questions arise when we consider collecting real normal on a running system:

1. How do we ensure that we have naot included abnamal sequences? That is, how do
we ensure that the system is nat being exploited as we mlled the normal traces?
Including abnormal sequences could result in false negatives.

2. How do we ensure that our normal is sufficiently comprehensive? How long do we
colled normal for? How much namal is enough? An incomplete normal could result
in false positives.

3. Areintrusions dill detedable a we increase the size of the normal? As the size of
normal increases, we include rare normal sequences that could owerlap more with
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abnormal sequences, thus reducing detection rates, i.e. increasing false negatives.

5.1 Collecting Real Normal

We have mlleded nama for | pr in two dfferent red environments, at the
Massadhusetts Institute of Techndogy's Artificia Intelligence laboratory (MIT), and at
the University of New Mexico's Computer Science Department (UNM). In bah cases,
we used a very simple solution to question 1 psed above: How do we ensure that
intrusive behavior is not included in these normals? For the | pr we have studied, we ae
aware of only one intrusion (reported in sedion 4.2.2 above) which requires that | pr
generate a1000 pint jobsin close successon, which is omething we a observers could
easily deted on a system that never generates more than 200jobs in aday. This does not
guarantee that our normal is free of intrusion traces, bu at least we have excluded the
intrusion against which we perform our analysis. In general, however, the problem will
not be so trivial, particularly if we do nd know the nature of the intrusion beforehand, i.e.
if we ae concerned with true anomaly detedion. Possble ways of excluding intrusive
behavior from the normal trace include:

* Colled normal inthered, open environment, whil st monitoring the environment very
caefully to ensure that no intrusions have happened duing our colledion d normal.
This is what we did fof pr .

* Colled normal in an isolated environment where we ae sure no intrusons can
happen. The disadvantage of this lution is that the norma will possbly be
incomplete, becaise the eavironment is of necessty limited, particularly in the case of
programs, such asendmai | , that communicate with the outside world.

In the MIT environment, we traced | pr running on 77 dfferent hosts, ead running
SunOS, for two weeks, to oltain traces of atotal of 2766 pint jobs. The growth of the
size N of the normal database is shown in Figure 4. As more print jobs are tracal and the
traces added into namal, so the number of unique sequences N in the normal database
grows. Initialy, the growth is very rapid, bu then tapers off, in particular, for k =6 and
k =10, thereisminimal database growth past 1000 pint jobs. This reinforces the ideaof
choasing as dhort a sequencelength as possble, becaise we can acaimulate the full range
of normal sequences much more rapidly for short sequences. We regard Figure 4 as
promising, because it indicates that normal behavior is limited and can be olleded in a
short period of time (depending on how much the system is used).
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Figure 4. Growth of database size for | pr real normal collected at MIT. The x axis
indicates the number of print jobs traced, and the y axis indicates the number of
unique sequences N in the normal database.

How much daes normal vary between dff erent environments? We have some answersin
the cae of | pr because we have two namals colleded independently at MIT and UNM,
for the identicd program and operating system. These represent considerably diff erent
environments, as can be seen from the differences listed in Table 6, for example, we
tracad | pr on orly one host at UNM, whereas we tracead it on 77 hosts at MIT. Despite
the differences in environment, the patterns of database growth in the UNM environment
are similar to those & MIT (data not shown), athough the resulting database sizes are
different: 569 unque sequences for UNM and 876for MIT. These databases not only
differ in size, but also in content: For example, a cmparison d the unique sequences in
both databases for k = 6 indicaes that only 141 d the sequences are the same between
the databases, which represents 40% of the UNM database and 29% of the MIT database.
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UNM MIT

Number of hosts 1 77
Number of print jobs 1234 2766
Time period (weeks) 13 2
DB SizeN 569 876
Detection of Iprcp:

# mismatches 11009 11006

% mismatches 7 7

S, 0.4 0.4

Table 6. Comparison of | pr normals collected at MIT and at UNM. These results
arefor k =10.

Although these databases are very different, they both deteda the | pr cp intrusion amost
identicdly. When we analyze the anomalous squences generated by the intrusion, we
find that there ae 16 unique anomalous squences deteded by the UNM database, which
areidenticd to 16 d the 17 urique anomalous fquences deteded by the MIT database,
i.e. the anomaly is amost identicd for both databases. This suggests that intrusion
signatures could be encoded in sequences of system cdls, i.e. the system cdl signature
could be the basis of a misuse-IDS, or an IDS that does both anomaly and misuse
detection (for a further exploration of these ideaqd3&§.

5.2 How much Normal is enough?

This ®dion addresses questions 2 and 3 paed above: How much namal is enough?
And, areintrusions dill detedable & the size of normal increases? In ou experiments we
used thel pr datawe mlleded in the red environments at MIT and UNM. In bah cases,
we divided the set of data into two, the first set is used as the training set, and the second
set as the test set. The training data ae used to buld upa normal database, and the test
data ae scanned using this normal database (we explain below how we docse the test
and training sets). A false positive is then any sequieincine test set for which

d.(i)=C.

We determine the lowest false postive rate €, by setting the threshad C to be the
maximum value nealed for the normal database to deted the | pr cp intrusion. Becaise
we only have one intrusion to test against, and we set the threshdd so that we dways
deted it, we have zero false negatives. The false paositive rate is sSmply the number of
false positives per print job.

The expected false paositive rate was caculated using the bodstrap technique, which is a
procedure for estimating (approximating) the distribution d a statistic from a randam
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sample [14]. We divided the jobs into test and training sets as follows. up to 700jobs
were dhosen randamly with replacanent for the training set, and the remaining jobs were
used for the test set (thus we had atest set of 2066jobs for MIT and ore of 534 jobs for
UNM). This processwas repeaed 100times to get the bodstrap estimate. The boastrap
is appli cable here becaise the data gopea to be stationary. We dhedked for stationarity by
sampling the jobs both randamly, and in small chrondogicdly conseautive groups, and
comparing the means produced by the two sampling methods. A two-tail ed, two sample t-
test between these two samples gives a P-value of 0.19. Thus the probability that these
means are different is insignificant.

The epeded fase paositive rates and standard deviations are shown in Figure 5 for
varying sizes of the normal database. The data shown are for the MIT | pr, with k =10,
and C=4. Similar results were obtained with the | pr data olleded at UNM (data not
shown).
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Figure 5. Bootstrap estimate of change in expected false positive rate as normal
database sizeincreases.

To summarize, the lowest expeded false positive rate in Figure 5 is 0.01+ 0.004. Thisis
abou 1 false positive in every 100 jobs, or, onthe MIT system, an average of 2 false
paositives per day. This rate was computed for a normal database of 700 jobs, with 2066
jobs in the test set. From Figure 5 the false paositive rate gpeas to be leveling off.
However, when we increase the size of the normal database to 1400jobs (not shown in
the figure), with atest set of 1366jobs, the rate drops to 0.005+ 0.002, which is one false
paositive per day. We ae hesitant to draw too many conclusions from these data becaise
they are derived from a single program for which we have only one true pasitive (an
intrusion), and so we cannd get an acairate measure of false negatives, or the fase

24



paositive rate we could exped if we had to deted severa different intrusions. Furthermore,
athouwgh we have dore tests to ched for stationarity, we caana be a@solutely sure that
there are no time-dependent effects in the data.

If we build the normal database drondogicdly from the first 700jobs and compare that
to the remaining 2066jobs, we get a false positive rate of 0.004for a sequence length of

10.

Although thisis within the boastrap dstribution, there is a probability of only 0.05 d

getting a false positive rate that low when the jobs are randamly seleded. So it may be
that there ae temporal dependencies not deteded by our tests for stationarity. In an on
line system, nama would be cnstructed from the first jobs encourtered, and so in this
case we could expect lower false positive rates.

It is worth nding that these false positive rates are wmputed for a system in which we
have only spent 3 or 4 days colleding normal behavior. Provided the size of the normal
database does nat grow indefinitely, we muld exped our false positive rates to reduce &
we spend more days on namal colledion. This is illustrated by the fad that when we
increase the size of the normal database to include 1400jobs (7 days), ou false paositive
rate halves. Furthermore, even if we use dl of the normal behavior traced over two weeks
to buld the normal database, the threshald for detedion d thel pr cp intrusion daes not
drop (se€lable6).

5.3 Analysisof False Positives

We looked at the sequences which were resporsible for the false positives to get an idea
of what could be caising rare but accetable behavior. We investigated severa false
positives and found unusual circumstances behind all of them, including:

1.

3.
4.

Trying to print on a madine where the file/ dev/ pri nt er did na exist. Thisfile
is a named locd socket that conreds to | pd running on the maciine. Apparently
| pr would place ajob in the queue, bu coud na communicae with | pd. It is
unclear whethelr pd indicated an error. It is likely that the job did not print.

. Printing from symbadlic links. | pr was told to print a file in the airrent diredory

using the -s flag. It seans that the file to be printed was adually a symbdlic link to
ancther file, so | pr followed the symbdlic link to the original file, and then pacel a
symbolic link to the real file in the spool directory.

Printing from a separately administered machine with a very different configuration.
Trying to print a job so large thhpr ran out of disk space for the log file.

When the normal database is built chrondogicdly, there ae only 6 false positives, 3 d
which are caised by thefirst case (1) above, and 3 d which are caised by the second case

).
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Are these redly false positives? A false positive is sme sort of acceptable behavior that
is classfied as anomalous. If the behavior is unacceptable, even if it is not caused by an
intrusion, we would want to know abou it, because it indicaes that the system is not
functioning properly or efficiently. Points 1 and 4 above ae both instances of irregular
behavior symptomatic of a problem with the system; both indicate condtions that need to
be redified. In this nse, neither 1 na 4 are fase paositives. This kind d analysis
indicaes that our actual false positive rate is lower than the reported values, for example,
in the cae of a chrondogicd normal, the number of false positives would be reduced
from 6 to 3.

6. Discussion

The previous two sedions have presented evidence that short sequences of system cdls
are good dscriminators between namal and abnarmal operating charaderistics of several
common UNIX programs. In esence, we have founda regularity in exeauting programs
that is highly likely to be perturbed by intrusive adivities. These results are interesting for
several reasons. They suggest a possble implementation path for a lightweight intrusion-
detedion system; the techniques might be gplicable to seaurity problems in ather
computational settings; they ill ustrate the value of studying the empiricd behavior of
adual systems,; and they suggest a strategy for approaching other on-line problems in
computing that are not well solved by conventional methods.

Although the results presented in Sedions 4 and 5 are suggestive, much more testing
needs to be cmpleted to validate the gpproadh. In particular, extensive testing on awider
variety of UNIX programs being subjeded to large numbers of different kinds of
intrusions is desirable. For eat o these programs, we would idedly like to have results
bath in controlled environments (in which we @uld run large numbers of intrusions) and
in live user environments. Overall, we exped that discrimination will be more difficult in
highly stressed environments (high user loads, overloaded networks, etc.) in which many
exceptional condtions are raised. Furthermore, we would like to test these ideas in
different operating systems, such as Windowvs NT. Receily, we have succesdully
deteded intrusions in two aher programs. a buffer overflow in the xI ock program
running in Linux, and a symbalic link vunerability in the swi nst al | program runnng
under HP-UX[8]*.

However, there ae some logisticd problems associated with colleding data in live user
environments. Most operating systems are not shipped with robust traang fadliti es, and

* This data was collected by Mark Crosbie, at Hewlett Packard.
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as much as possble, we would like to colled data in standardized environments. It is
difficult to justify installing code with known vunerabilities (needed to run large
numbers of different intrusions) in a production environment, thus putting the user
community at risk of red intrusions. Finadly, there ae no obvous doppng criteria
Every system is dightly different---when can we say that we have wlleded enowgh data
on enough different programs in enough different environments?

Asauming that more detail ed experiments confirm our results, there ae ahost of systems-
engineaing questions that need to be aldressed before an IDS based onthese principles
could be implemented and deployed. First, what combination d synthetic and adual
behavior shoud be mlleded to define anormal database? In many user environments,
catain (legitimate) feaures of programs might be seldom used, and so a database
generated from live user traces might generate false paositives, whereas constructing a
synthetic database gpropriately could prevent these false positives. It would also be
much easier to dstribute an IDS that did nd require alot of customization at thetimeit is
installed---an IDS shodd make systems administration easier not harder. Thus, the
colledion d red usage data & install-time would have to be highly automated. A related
complicaion is how to guarantee that no intrusions take placeduring the olledion d
norma behavior. Seand, which UNIX programs $ioud be monitored, and hav (and
when) shoud databases be switched when dfferent processes are started? We could use a
completely different database for ead program---ealier we emphasized that normal
behavior for different programs is sgnificantly different (ranging from 40% to 80%).
However, these percentages also imply that there is much behavior in common ketween
different programs, and so in a runnng implementation we might be @le to reduce
resource requirements by exploiting this commonality. Finally, we envision ou IDS as a
red-time, online system that could paentialy discover and interrupt some intrusions
before they were successul. The feasibility of thisis highly dependent on efficient design
and implementation of both the tracing facility and the algorithms that detect mismatches.

Our emphasis has been on determining if our approad can be succesdul at al. We were
not too concerned with efficiency isaues in this paper. However, for the system to be ale
to deted intrusions in red-time---as they are happening---will require caeful attention to
efficiency isaues. As a first step towards this we have analyzed the complexity of our
algorithm, although we have not been able to measure its efficiency in a production
environment. Shoud the implementation prove too inefficient, there ae numerous
smplificaions we could experiment with, such as looking only at spedfic kinds of cdls,
or only at every tenth call, etc.

An important question in the context of an IDS is what resporse is most appropriate once
apossble intrusion has been deteded. Thisis a deg topic and largely beyond the scope
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of our paper. Most IDS respond ly sending an alarm to a human operator. In the long run,
however, we believe that the resporse side will have to be largely automated if IDS
techndogy is going to be widely deployed. We have some evidence that intrusions
generate highly regular signatures, so it might be possble to store these signatures for
known intrusions and respond more agressvely when those signatures are deteded.
Then for new anomaies more caitious adions could be taken. One alvantage of
monitoring at the processlevel isthat a wide range of resporsesis posshble, ranging from
shutting down the computer completely (most radicd) to simply running the process at
lower priority.

The methodwe propcse is not a panacea--it will certainly miss ®me forms of intrusions.
One example is race ondtion attadks, which typicdly invave steding a resource (such
as afile) creded by a processrunnng as roat, before the process has had a chance to
restrict accessto the resource If the root processdoes not deted an unwsua error state, a
normal set of system cdls will be made, defeding our method. Other examples of
intrusions that would be missed are passwvord hijadking (when ore user masquerades as
another), and cases in which a user violates policy without using privileged processes.

The idea of looking at short sequences of behavior is quite general and might be
applicable to several other seaurity problems. For example, people have suggested
applying the tedhnique to several other computational systems, including: The Java
virtual madine, the CORBA distributed oljed system, seaurity for ATM switches, and
network seaurity. For ead o these potential applicaions, it would be necessary first to
determine ampiricdly whether simple definitions (analogous to sequences of system
cdls) give a ¢ea and compad signature of normal behavior, and then to determine if the
signature is perturbed by intrusive behavior.

Our approadh is smilar to severa other approades, although the differences are aiticd.
Ko et a [30] have dso chosen the level of privileged processs, bu they charaderize the
behavior of a privileged process by a program spedficaion a pdicy, which is a
description d what the program shoud be &le to do. This pdicy is derived from the
program code and so requires Pedalized knowledge of program function. Writing a
palicy can be prone to the same sorts of errors as writing the program, i.e. it is hard to
guarantee orreadness Most importantly, from our perspedive, such a palicy could easily
include behavior that is legal but not normal because it is hard to determine beforehand
what behavior shoud be normal. We avoid these isaues by treding the program as a bladk
box, and relying purely on empiricd observation to ascertain program behavior. Ancther
key difference is that we rely exclusively on sequencing information, urdike the
spedficaion approad, which monitors individual operations. However, there ae other
approadhes, such as TIM [39], that consider sequencing information. These differ from
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our approach in that they look at the domain of user behavior, and use aprobabiliti stic
approadh for deteding anomalies. Because our results are sufficiently promising the
added complexity of using probabiliti es ans unnecessary. It is possble that our smple
deterministic gpproach is succesdul becaise our datais well-structured. If thisisthe case,
it may well be that probabiliti es are necessary in less s$ructured damains, such as user
behavior.

In ealier papers, we have alvocaed a comprehensive gproach to computer seaurity
based on a mlledion d organizing principles derived from our study of the immune
system [38]. The immune-system perspedive has certainly influenced many of our design
dedsions, bu in this paper we ae anphasizing concrete cmmputational mechanisms and
largely ignoring the immune system connedion. Detail s of how our approacd to IDS fits
into the overall immune-system vision are given in [17]. Extensions are suggested by
analogy.

An important bias underlying our approach is that modern computers are "complex
systems' in the sense that they are wmprised of alarge number of comporents, many of
which interad norinealy. These comporents are continualy evolving, as well as the
environments in which they are anbedded, their users, and the programmers who
implement them. This complexity thredgens to overwhelm design strategies based on
functional decompasition. Furthermore, it implies that athowgh we design and buld
computers, we do nd necessarily understand hav they behave. An example of thisis the
fad that the normal behavior of a highly complex program such as sendmai | can be
cgptured by such a small number of system cdl sequences---it would have been hard to
predict this. Rather than making assumptions abou how we believe that programs or
users will behave, or trying to prespedfy their behavior (and being surprised), this paper
asks the question: What behavior do we observe? That is, we take eisting artifads and
study their behavior rigorously. Althowgh such an approach might be dismised as
"merely empiricd"” rather than theoreticd, our paint is that we neel to spend more time
asking to what extent our existing theories describe our existing artifacts.

7. Conclusions

We presented a method for anomaly intrusion detedion at the processlevel. Normal was
defined in terms of short sequences of system cdls exeauted by running privileged
processes. Our profiles of normal behavior, which consisted of unique sequences of
length 10, were remarkably compad, for example, the sendnmai | database contained
only 1318 such sequences. Three measures were used to deted abnamal behavior as
deviations from profiles of normal. These measures allowed us to succesdully deted
severa clases of abnama behavior, including: Intrusions in the UNIX programs
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sendmai |, | pr and ft pd; faled intrusion attempts against sendnai | ; and error
condtions in sendmai | . We studied two dfferent methods of acaimulating normal
profiles. Generating normal syntheticdly by attempting to exercise the program in as
many modes of normal operation as possble, and tradng a process in a live user
environment. In the latter case we have analyzed the data for false positives. Our false
paositive rates for | pr were &ou 1 in every 100 pint jobs (and explainable in terms of
system problems), bu these results are tentative becaise we did nd have sufficient data
for a ommprehensive anaysis. In future we intend to expand ou base of intrusions and
gather more data for more programs running in red environments, so we can get more
realistic estimates of false positive and false negative rates.
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Appendix 1: Description of Intrusions

This appendix gives more detail ed descriptions of intrusions and error conditions that we
tested against.

* sunsendmailcp: The sunsendmail cp script uses a spedal command line option to
cause sendnai | to append an email message to afile. By using this <ript on afile
such ag . r host s, a local user may obtain root access.

» sydlogd: The sysl ogd attadk uses the syslog interface to owerflow a buffer in
sendmai | . A message is ent to the sendmai | onthe victim madine, causing it
tolog avery long, spedally creaed error message. The log entry overflows a buffer in
sendmai | , repladng part of the sendmai | ’s runnng image with the datader's
machine cwde. The new code is then exeauted, causing the standard I/O of a root-
owned shell to be dtaded to a port. The dtadker may then attach to this port at his or
her leisure. This attadk can be run ether locdly or remotely; we have tested bah
modes. We dso varied the number of commands issied as roat after a successul
attack.

» decode: In dder sendnai | instalations, the dias database cntains an entry cdled
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“dede,” which resolves to uudecode, a UNIX program that converts a binary file
encoded in plain text into its original form and rame. uudecode respeds absolute
filenames, so if a file “bar.uu’ says that the origina file is “/home/fod/.rhosts’ then
when uudecode is given “bar.uu’, it will attempt to creae foo's . r host s file.
sendmai | will generally run uudecode as the semi-privileged user daanon, so
email sent to deade caina overwrite any file on the system; however, if the target
file happens to be world-writable, the demde dias entry alows these files to be
modified by a remote user.

* lprcp: The lprcp attadk script uses | pr to replacethe cntents of an arbitrary file
with those of ancther. This attack exploits the fad that older versions of | pr use only
1000 dfferent names for printer queue files, and they do nd remove the old queue
files before reusing them. The dtad consists of getting | pr to place asymbadlic link
to the victim file in the queue, incrementing | pr’s courter 1000 times, and then
printing the new file, overwriting the victim file’'s contents.

o ftpd: Thisisa @nfiguration problem. Wi. f t pd is misconfigured at compil e time,
allowing users SITE EXEC accessto /bin. Users can then run exeautables such as
bash with root privilege.

* unsuccessful intrusions: sm5x, sm565a.

» forwarding loops: A locd forwarding loops occurs in sendmai | when a set of
$HOWE/ . f or war d filesform alogicd circle. We @nsidered the simplest case, with
the following setup:

Email address | forward file
foo@hostl bar@host2
bar@host2 foo@hostl

Appendix 2: Synthetic Normal Gener ation

This appendix describes briefly how synthetic normals were generated for ft pd and
| pr.

The synthetic f t pd was generated by tradng the exeaution o ftpd, wsing every option on
thef t pd man page at least once.

The synthetic | pr was generated by traang the following types of | pr jobs: Printing a
text file, printing a postscript fil e, attempting to print a norexistent file, printing to several
different printers, printing with and withou burst pages, printing with symbadlic links (the
-s option).
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8. Revisions madeto the Paper

We list al of the mgor changes here, indexed by sedion and, where gpropriate, the
number of the paragraph within the section. We dso indicate the page numbers of the
changes.

Title.
Changed the title on page 1 to:
“Intrusion Detection using Sequences of System Calls”

Section 1.

Modified paragraph 2 on page 2:

“There ae many different levels on which an IDS can monitor system behavior. It is
criticd to profile normal behavior at alevel that is both robust to variationsin namal and
perturbed by intrusions. In the work reported here, we dhose to monitor behavior at the
level of privileged processes. Privileged processes are running programs that perform
services (such as ending or recaving mail), which require accssto system resources
that are inaccesgble to the ordinary user. To enable these processes to perform their jobs,
they are given privileges over and above thase of an ordinary user (even though they can
be invoked by ordinary users). In UNIX, processes usualy run with the privil eges of the
user that invoked them. However, privileged processes can change their privil eges to that
of the superuser by means of the setuid mechanism. One of the seaurity problems with
privileged processes in UNIX is that the granularity of permisgons is too coarse:
Privileged processes need superuser status to access ystem resources, bu granting them
such status gives them more permisson than necessary to perform their speafic tasks
[30]. Consequently, they have permisson to accessall system resources, na just those
that are relevant to their operation. Privileged processes are trusted to accessonly relevant
system resources, bu in cases where there is sme programming error in the cde that the
privileged processis running, or if the privileged processis incorredly configured, an
ordinary user may be ale to gain superuser privileges by exploiting the problem in the
program. For the sake of brevity, we usually refer to privileged processes (or programs)
simply as “processes” (or “programs”), and use the qualifier only to resolve ambiguities.”

Modified paragraph 3 on pages 2-3:

“It is clea that privileged processes are agood level to focus on kecaise exploitation d
vulnerabiliti esin privileged processs can give a intruder super-user status. Furthermore,
privileged processes constitute anatural boundry for a cmputer, espedally processes
that listen to a particular port. In UNIX, privileged programs, such ast el net d and
| ogi nd, function as rvers that control access into the system. Corruption d these



servers can dlow an intruder to access the system remotely. Monitoring privil eged
processes also dfers some alvantages over monitoring user behavior, which has been the
most common method to date (for example, see [5],[12],[26],[35],[39]). The range of
behaviors of privileged processs is limited compared to the range of behaviors of users;
privileged processes usualy perform a spedfic, limited function, whereas users can cary
out a wide variety of adions. Finaly, the behavior of privileged processs is relatively
stable over time, espedally compared to user behavior. Not only do wsers perform a wider
variety of adions, bu the adions performed may change cnsiderably over time, whereas
the adions (or at least the functions) of privileged processes usualy do nd vary much
with time.”

Modified paragraph 4 on page 3:

“Our approach to deteding irregularities in the behavior of privileged programs is to
regard the program as a bladk box, which, when run, emits ssme observable. We believe
that this observable shodd be adynamic charaderistic of that program; although code
stored on dsk may have the potential to do karm, it has to be adually running to redize
that potential. If we regard the program as a bladk-box, we do nd neeal spedalized
knowledge of the internal functioning or the intended role of the program; we can infer
these indiredly by observing its normal behavior. A natural observable for processs in
UNIX would be based on system calls, becaise UNIX proceses accesses g/stem
resources through the use of system cdls. We have chasen short sequences of system
calls as our observable.”

Added paragraph 6 on pages 3-4:

“We want an IDS that is gable and lightweight (efficient), all of which depends on the
discriminator (observable) that we use to dstinguish between accetable ad
unaccetable behavior. By stable we mean that the discriminator reliably distinguishes
between accetable and uracceptable behavior. Our approad is experimental becaise we
believe that current theories do nd adequately describe how implemented systems redly
run. In this paper we ae primarily concerned with determining empiricdly if the
discriminator is gable. Efficiency is a secondary consideration, and is addressd in this
paper to the extent that we analyze the cmplexity of our algorithm; however, we do nd
report actual running times for the method on a production system. *

Removed the paragraph:

“One of our goals is lightweight intrusion cetedion. By lightweight we mean methods
that could be implemented in an IDS to run online, and that would use minimal
computing resources. Because an IDS is a preventative measure that does nat enhance
system performance (quite the reverse), it is hard to justify the use of a cmputationaly
expensive IDS. In many cases, if an IDS is not sufficiently lightweight, it simply will not



be used. Ancther advantage of having an IDS be sufficiently lightweight to run onlineis
the potential to deted intrusions in progress perhaps to prevent the intrusion attempt
from succeeding.”

Section 3.1.

Added paragraph 2 on page 7:

“This method is complicated by the fad that in UNIX a program can invoke more than
one process Processes are aeded viathef or k system cdl or its virtual variant vf or K.
The esentia diff erence between thetwo isthat af or k credes anew processwhichisan
instance of the same program (i.e. a @wpy), whereas a vf or k replaces the eisting
processwith a new one, withou changing the processID. We traceforks individualy and
include their traces as part of normal, bu we do nd yet tracevirtual forks becaise a
virtual fork exeautes a new program. In the future, we will switch databases dynamicadly
to follow the virtual fork’

Section 3.2.

Added paragraph 2 on page 9:

“We make a tea distinction here between normal and legal behavior. In the ided case
we want the normal database to contain all variationsin namal behavior, but we do nd
want it to contain every single possble path of legal behavior, becaise our approad is
based uponthe assumption that normal behavior forms only a subset of the passble legal
exeaution peths through a program, and unwsual behavior that deviates from those normal
paths sgnifies an intrusion a some other undesirable @ndtion. We want to be ale to
detea not only intrusions, bu aso unwsua condtions that are indicaive of system
problems. For example, when a processruns out of disk space it may exeaite some aror
code that results in an unwua exeaution sequence (path through the program). Clealy
such a path ikegal, but certainly it should not be regardechasmal.”

Added paragraph 4 on pages 9-10:

“An dternative is to constrain the measure locdly. The anomalies we have studied are
temporally clumped: Anomalous squences due to intrusions em to occur in locd
bursts. However, defining alocd measure is difficult because we have an unadered state
space i.e. we have no true notion d locdity---how “close” one system cdl is to ancther,
or how “close” one system cdl sequence is to ancther. We have dcaosen “Hamming
distance” between sequences as the measure. Although this choiceis ssmewhat arbitrary,
it is related to how closely anomalies are dumped. We canna theoreticdly justify this
measure, so we determine its worth empirically.”



Section 3.3.

Modifed paragraph 2 on page 11:

“To deted an intrusion, at least one of the sequences generated by the intrusion must be
classfied as anomalous. In terms of our measures, what we require is that at least one of
the sequences generated by the intrusion hes d,,,, > 0. We measure the strength of the
anomaly by d_.., and becaise we want intrusions to generate strong anomalies, we
assume that the higher the d,;,, the more likely it is that the sequence was adualy
generated by an intrusion. In pradice, we report the maximum d_,, value that was
encourtered duing atrace because that represents the strongest anomalous sgnal found
in the trace, i.e. we compute the signal of the anonglyas:”

Added the last sentence to paragraph 5 on page 12:

“The validity of the assumption that intrusive behavior is charaderized by increesed
Hamming distance from normal sequences is tested empiricdly in the sedions that
follow.”

Section 4.

Modified the fourth sentence of paragraph 1 on page 12-13:

“For example, if we generate normal syntheticdly we have no ideawhat false positive
rates we will get in redistic settings because our synthetic, by definition, includes all
variations on normal behavi¢although not all variations on legal behavitr)

Section 4.1.

Modified paragraph 1 on page 13:

“We studied namal behavior for three different programs in UNIX: sendmai | , | pr
and wu. ft pd (the first two were runnng under SunOS 4.1x, and the last one was
runnng under Linux). Sendmai | is a program that sends and recaves mail, | pr isa
program that enables usersto print documentsonaprinter, andf t pd isaprogram for the
transfer of files between locd and remote hosts. Becaise sendnai | is the most
complex of these programs, we will briefly describe how we exercised sendmai | to
produce aprofile of normal behavior (the methods for constructing synthetic normal for
the other two programs are described in Appendix 2). We @nsidered variations in
message length, number of messages, message @ntent (text, binary, encoded, encrypted),
message subjed line, who sent the mail, who receved the mail, and mailers. In addition,
we looked at the dfeds of forwarding, bourced mail and queuing. Lastly, we mnsidered
the effects of the origin of all these variations in the cases of remote and local delivery.”

Section 4.2.2.
Modified paragraph 3 on pages 17-18:
We ompared system cdl traces for eaty o the three céegories (successul exploits,



unsuccesdul exploits and error condtions) with the normal database for the relevant
program and recorded the number of mismatches, percentage of mismatches over the
tracg and S, values. Table 4 shows resuits for successful intrusions. Each row in the
table reports data for one typicd trace In most cases, we have @mndwcted multi ple runs of
the intrusion with identicd or nealy identicd results; where runs differed significantly,
we report arange of values. To date, we have olleded data on five succesul intrusions,
three of them for sendnmai | , ore for | pr [4] and ore for ft pd [8] CERT. swinstall
vulnerability. Ftp://info.cert.org/pub/ cert_advisories/ CA-96:27, December 1996.
[9]. The threesendmai | intrusions were: sunsendmai | cp [2], sysl ogd [3], [7],
and a demde dias intrusion. These intrusions are described in the gpendix. Most of the
successul intrusions are dealy deteded, with éA values of 0.5to 0.7.The exception to
this is the dewde intrusion, which, on the low end d the range, generates only 7
mismatches and a éA value of 0.2. These results suggest approximate detedion
thresholds that we would need in an online system to detect intrusions.

Modified the first and third rows of table 4 on page 18 :

Anomaly Number Mismatches % Mismatches S,

syslogd 248 - 529 17 - 30 0.7
sunsendmailcp 92 25 0.6
decode 7-22 1-2 0.2-0.5
Iprcp 242 9 0.5
ftpd 496 38 0.7

Added the fourth sentence to the caption of table 4 on page 18:
“In some cases the columns list a range of values, from minimum to maXimum.

Modified the third row of table 5 on page 18:

Anomaly Number Mismatches % Mismatches éA
sm565a 54 22 0.6
SmMSx 472 33 0.6
forward loop 21 -108 10 - 18 0.4-0.6
Section 5.1.

Added paragraph 3 on page 22:

“How much dces normal vary between dfferent environments? We have some answers
in the cae of | pr becaise we have two namals colleded independently a&t MIT and
UNM, for the identicd program and operating system. These represent considerably
different environments, as can be seen from the differences listed in Table 6, for example,
we traca | pr on orly one host at UNM, wheress we tracel it on 77 hats a MIT.
Despite the differences in environment, the patterns of database growth in the UNM




environment are similar to those & MIT (data not shown), although the resulti ng database
sizes are different: 569 unque sequences for UNM and 876for MIT. These databases not
only differ in size, bu aso in content: For example, a mmparison d the unique
sequences in bah databases for k = 6 indicaes that only 141 d the sequences are the
same between the databases, which represents 40% of the UNM database and 296 of the
MIT database.”

Section 5.3.

Added paragraph 3 on page 26:

“Are these redly false positives? A false pasitive is sme sort of acceptable behavior that
is classfied as anomalous. If the behavior is unaccetable, even if it is not caused by an
intrusion, we would want to know abou it, becaise it indicaes that the system is not
functioning properly or efficiently. Points 1 and 4 above ae both instances of irregular
behavior symptomatic of a problem with the system; both indicate condtions that need to
be redified. In this ®nse, neither 1 na 4 are false positives. This kind d anaysis
indicaes that our adual false positive rate is lower than the reported values, for example,
in the cae of a dirondogicd normal, the number of false positives would be reduced
from 6 to 3.”

Section 6.

Added the last sentence to paragraph 2 on page 26:

“Recently, we have succesdully deteded intrusions in two aher programs. a buffer
overflow in the x| ock program running in Linux, and a symbadlic link vunerability in
theswi nst al | program running under HP-UX.”

Added paragraph 5 on page 27:

“Our emphasis has been on determining if our approach can be successul at all. We were
nat too concerned with efficiency isaues in this paper. However, for the system to be ale
to deted intrusions in red-time---as they are happening---will require caeful attention to
efficiency isaues. As a first step towards this we have analyzed the complexity of our
algorithm, although we have not been able to measure its efficiency in a production
environment. Shoud the implementation prove too inefficient, there ae numerous
simplificaions we muld experiment with, such as looking only at spedfic kinds of cdls,
or only at every tenth call, etc.”

Added paragraph 9 on pages 28-29:

“Our approach is smilar to several other approacdes, athough the differences are aiticd.
Ko et a [30] have dso chosen the level of privileged processes, bu they charaderize the
behavior of a privileged process by a program spedficaion a pdicy, which is a
description d what the program shoud be &le to do. This pdlicy is derived from the



program code and so requires Pedalized knowledge of program function. Writing a
palicy can be prone to the same sorts of errors as writing the program, i.e. it is hard to
guarantee orredness Most importantly, from our perspedive, such a palicy could easily
include behavior that is legal but not normal because it is hard to determine beforehand
what behavior shoud be normal. We avoid these isaues by treding the program as a bladk
box, and relying purely on empiricd observation to ascertain program behavior. Ancther
key difference is that we rely exclusively on sequencing information, udike the
spedficaion approad, which monitors individual operations. However, there ae other
approadies, such as TIM [39], that consider sequencing information. These differ from
our approach in that they look at the domain of user behavior, and use aprobabiliti stic
approach for deteding anomalies. Because our results are sufficiently promising the
added complexity of using probabiliti es s£ems unrecessary. It is passble that our smple
deterministic goproacd is successul because our data is well-structured. If thisisthe cae,
it may well be that probabiliti es are necessary in less s$ructured damains, such as user
behavior.”



