
Weaknesses in the Key Sheduling Algorithm ofRC4Sott Fluhrer1, Itsik Mantin2, and Adi Shamir21 Ciso Systems, In., 170 West Tasman Drive, San Jose, CA 95134sfluhrer�iso.om2 Computer Siene department, The Weizmann Institute, Rehovot 76100, Israel.fitsik,shamirg�wisdom.weizmann.a.ilAbstrat. In this paper we present several weaknesses in the key shedul-ing algorithm of RC4, and desribe their ryptanalyti signi�ane. Weidentify a large number of weak keys, in whih knowledge of a smallnumber of key bits suÆes to determine many state and output bitswith non-negligible probability. We use these weak keys to onstrutnew distinguishers for RC4, and to mount related key attaks with pra-tial omplexities. Finally, we show that RC4 is ompletely inseure in aommon mode of operation whih is used in the widely deployed WiredEquivalent Privay protool (WEP, whih is part of the 802.11 standard),in whih a �xed seret key is onatenated with known IV modi�ers inorder to enrypt di�erent messages. Our new passive iphertext-only at-tak on this mode an reover an arbitrarily long key in a negligibleamount of time whih grows only linearly with its size, both for 24 and128 bit IV modi�ers.1 IntrodutionRC4 is the most widely used stream ipher in software appliations. It wasdesigned by Ron Rivest in 1987 and kept as a trade seret until it leaked out in1994. RC4 has a seret internal state whih is a permutation of all the N = 2npossible n bits words, along with two indies in it. In pratial appliations n = 8,and thus RC4 has a huge state of log2(28!� (28)2) � 1700 bits.In this paper we analyze the Key Sheduling Algorithm (KSA) whih derivesthe initial state from a variable size key, and desribe two signi�ant weaknessesof this proess. The �rst weakness is the existene of large lasses of weak keys,in whih a small part of the seret key determines a large number of bits ofthe initial permutation (KSA output). In addition, the Pseudo Random Gen-eration Algorithm (PRGA) translates these patterns in the initial permutationinto patterns in the pre�x of the output stream, and thus RC4 has the undesir-able property that for these weak keys its initial outputs are disproportionallya�eted by a small number of key bits. These weak keys have length whih isdivisible by some non-trivial power of two, i.e., ` = 2qm for some q > 01. When1 Here and in the rest of the paper ` is the number of words of K, where eah wordontains n bits.

RC4n uses suh a weak key of ` words, �xing n + q(` � 1) + 1 bits of K (as apartiular pattern) determines �(qN) bits of the initial permutation with prob-ability of one half and determines various pre�xes of the output stream withvarious probabilities (depending on their length).The seond weakness is a related key vulnerability, whih applies when partof the key presented to the KSA is exposed to the attaker. It onsists of theobservation that when the same seret part of the key is used with numerousdi�erent exposed values, an attaker an rederive the seret part by analyzingthe initial word of the keystreams with relatively little work. This onatena-tion of a long term seret part with an attaker visible part is a ommonly usedmode of RC4, and in partiular it is used in the WEP (Wired Equivalent Pri-vay) protool, whih protets many wireless networks. Our new attak on thismode is pratial for any key size and for any modi�er size, inluding the 24 bitreommended in the original WEP and the 128 bit reommended in the revisedversion WEP2.The paper is organized in the following way: In Setion 2 we desribe RC4and previous results about its seurity. In Setion 3 we onsider a slightly mod-i�ed variant of the Key Sheduling Algorithm, alled KSA�, and prove that apartiular pattern of a small number of key bits suÆes to ompletely determinea large number of state bits. Afterwards, we show that this weakness of KSA�,whih we denote as the invariane weakness, exists (in a weaker form) also inthe original KSA. In Setion 4 we show that with high probability, the patternsof initial states assoiated with these weak keys also propagate into the �rstfew outputs, and thus a small number of weak key bits determine a large num-ber of bits in the output stream. In Setion 5 we desribe several ryptanalytiappliations of the invariane weakness, inluding a new type of distinguisher.In Setions 6 and 7 we desribe the seond weakness, whih we denote as theIV weakness, and show that a ommon method of using RC4 is vulnerable toa pratial attak due to this weakness. In Setion 8, we show how both theseweaknesses an separately be used in a related key attak. In the appendies, weexamine how the IV weakness an be used to attak a real system (appendix A),how the invariane weakness an be used to onstrut a iphertext-only distin-guisher and to prove that RC4 has low sampling resistane (appendies B andC), and how to derive the seret key from an early permutation state (appendixD).2 RC4 and Its Seurity2.1 Desription of RC4RC4 onsists of two parts (desribed in Figure 1): A key sheduling algorithmKSA whih turns a random key (whose typial size is 40-256 bits) into an initialpermutation S of f0; : : : ; N � 1g, and an output generation part PRGA whihuses this permutation to generate a pseudo-random output sequene.The PRGA initializes two indies i and j to 0, and then loops over foursimple operations whih inrement i as a ounter, inrement j pseudo randomly,

exhange the two values of S pointed to by i and j, and output the value of Spointed to by S[i℄ + S[j℄2. Note that every entry of S is swapped at least one(possibly with itself) within anyN onseutive rounds, and thus the permutationS evolves fairly rapidly during the output generation proess.The KSA onsists of N loops that are similar to the PRGA round operation.It initializes S to be the identity permutation and i and j to 0, and applies thePRGA round operation N times, stepping i aross S, and updating j by addingS[i℄ and the next word of the key (in yli order). We will all eah round ofKSA a step.KSA(K)Initialization:For i = 0 : : : N � 1S[i℄ = ij = 0Srambling:For i = 0 : : : N � 1j = j + S[i℄ +K[i mod `℄Swap(S[i℄; S[j℄)
PRGA(K)Initialization:i = 0j = 0Generation loop:i = i+ 1j = j + S[i℄Swap(S[i℄; S[j℄)Output z = S[S[i℄ + S[j℄℄Fig. 1. The Key Sheduling Algorithm and the Pseudo-Random Generation Algorithm2.2 Previous Attaks on RC4Due to the huge e�etive key of RC4, attaking the PRGA seems to be infea-sible (the best known attak on this part requires time that exeeds 2700). Theonly pratial results related to the PRGA deal with the onstrution of dis-tinguishers. Fluhrer and MGrew desribed in [FM00℄ how to distinguish RC4outputs from random strings with 230 data. A better distinguisher whih re-quires 28 data was desribed by Mantin and Shamir in [MS01℄. However, thisdistinguisher ould only be used to mount a partial attak on RC4 in broadastappliations.The fat that the initialization of RC4 is very simple stimulated onsiderableresearh on this mehanism of RC4. In partiular, Roos disovered in [Roo95℄ alass of weak keys that redues their e�etive size by �ve bits, and Grosul andWallah showed in [GW00℄ that for large keys whose size is lose to N words,RC4 is vulnerable to a related key attak.More analysis of the seurity of RC4 an be found in [KMP+98℄, [Gol97℄ and[MT98℄.2 Here and in the rest of the paper all the additions are arried out modulo N

3 The Invariane WeaknessDue to spae limitations we prove here the invariane weakness only for a sim-pli�ed variant of the KSA, whih we denote as KSA� and desribe in Figure 2.The only di�erene between them is that KSA� updates i at the beginning ofthe loop, whereas KSA updates i at the end of the loop. After formulating andproving the existene of this weakness in KSA�, we desribe the modi�ationsrequired to apply this analysis to the real KSA.KSA(K)aFor i = 0 : : : N � 1S[i℄ = ii = 0j = 0Repeat N timesj = j + S[i℄ +K[i mod `℄Swap(S[i℄; S[j℄)i = i + 1
KSA�(K)For i = 0 : : : N � 1S[i℄ = ii = 0j = 0Repeat N timesi = i + 1j = j + S[i℄ +K[i mod `℄Swap(S[i℄; S[j℄)a KSA is rewritten in a way whih lari�es the relation to KSA�Fig. 2. KSA vs. KSA�3.1 De�nitionsDe�nition 1 Let S be a permutation of f0; : : : ; N � 1g, t be an index in S andb be some integer. Then if S[t℄ mod b� t, the permutation S is said to b-onservethe index t. Otherwise, the permutation S is said to b-unonserve the index t.Denote the permutation S and the indies i and j after round t of KSA� as St, itand jt respetively. Denote the number of indies that a permutation b-onservesas Ib(S). For the sake of simpliity, we often write It instead of Ib(St).De�nition 2 A permutation S of f0; : : : ; N � 1g is b-onserving if Ib(S) = N ,and is almost b-onserving if Ib(S) � N � 2.De�nition 3 Let b; ` be integers, and let K be an ` words key. Then K is alleda b-exat key if for any index t K[t mod `℄ � (1� t) (mod b). In ase K[0℄ = 1and msb(K[1℄) = 1, K is alled a speial b-exat key.Notie that for this ondition to hold, it is neessary (but not suÆient) thatb j `.

3.2 The WeaknessTheorem 1 Let q � n and ` be integers and b def= 2q. Suppose that b j ` andlet K be a b-exat key of ` words. Then the permutation S = KSA�(K) isb-onserving.Before getting to the proof itself, we will prove an auxiliary lemmaLemma 1 If it+1 � jt+1 (mod b), then It+1 = It.Proof: The only operation that might a�et S (and maybe I) is the swapping op-eration. However, when it+1 and jt+1 are equivalent (mod b), St+1 b-onservesit+1 (jt+1) if and only if St b-onserved jt (it). Thus the number of indies Sb-onserves remains the same. utProof:(of Theorem 1) We will prove by indution on t that for any 1 � t � N ,it turns out that Ib(St) = N and it � jt (mod b). This in partiular implies thatIN = N , whih makes the output permutation b-onserving.For t = 0 (before the �rst round), the laim is trivial beause i0 = j0 = 0and S0 is the identity permutation whih is b-onserving for every b. Supposethat jt � it and St is b-onserving. Then it+1 = it + 1 andjt+1 = jt + St[it+1℄ +K[it+1 mod `℄ mod b� it + it+1 + (1� it+1) = it + 1 = it+1Thus, it+1 � jt+1 (mod b) and by applying Lemma 1 we get It+1 = It = N andtherefore St+1 is b-onserving. utKSA� thus transforms speial patterns in the key into orresponding pat-terns in the initial permutation. The fration of determined permutation bits isproportional to the fration of �xed key bits. For example, applying this resultto RC4n=8;`=6 and q = 1, 6 out of the 48 key bits ompletely determine 252 outof the 1684 permutation bits.3.3 Adjustments to KSAThe small di�erene between KSA� and KSA (see Figure 2) is essential in thatKSA, applied to a b-exat key, does not preserve the equivalene (mod b) of iand j even after the �rst round. Analyzing its exeution on a b-exat key givesj1 = j0 + S0[i1℄ +K[i1℄ = 0 + S0[0℄ +K[0℄ = K[0℄ mod b� 1 mod b6� 0 = i1and thus the struture desribed in Setion 3.2 annot be preserved by the yliuse of the words of K. However, the invariane weakness an be adjusted to thereal KSA, and the proper modi�ations are formulated in the following theorem:Theorem 2 Let q � n and ` be integers and b def= 2q. Suppose that b j ` and letK be a speial b-exat key of ` words. ThenPr[KSA(K) is almost b-onserving℄ � 2=5when the probability is over the rest of the key bits.

Due to spae limitations, the formal proof of this theorem (whih is basedon a detailed ase analysis) will appear only in the full version of this paper.However, we an explain the intuition behind this theorem by onentrating onthe di�erenes between Theorems 1 and 2, whih deal with KSA� and KSArespetively. During the �rst round, two deviations from KSA� exeution o-ur. The �rst one is the non-equivalene of i and j whih is expeted to ausenon-equivalent entries to be swapped during the next rounds, thus ruining thedeliate struture that was preserved so well during KSA� exeution. The se-ond deviation is that S b-unonserves two of the indies, i1 = 0 and j1 = K[0℄.However, we an anel the ij disrepany by foring K[0℄ (and j1) to 1. In thisase, the disrepany in S[j1℄ (K[1℄) auses an improper value to be added toj, thus repairing its non-equivalene to i during the seond round. At this pointthere are still two unonserved indies, and this aberration is dragged arossthe whole exeution into the resulting permutation. Although these orruptedentries might interfere with j updates, the pseudo-random j might reah thembefore they are used to update j (i.e., before i reahes them), and send them intoa region in S where they annot a�et the next values of j3. The probability ofthis luky event is ampli�ed by the fat that the orrupted entries are i1 = 0whih is not touhed until the termination of the KSA due to its distane fromthe urrent loation of i, and j2 = 1 +K[1℄ > N=2 (reall that msb(K[1℄) = 1),that is far from i1 = 2, whih gives j many opportunities to reah it before idoes. The probability of N=2 pseudo random j's to reah an arbitrary value anbe bounded from below by 2/5, and extensive experimentation indiates thatthis probability is atually lose to one half.4 Key-Output CorrelationIn this setion we will analyze the propagation of the weak key patterns into thegenerated outputs. First we prove Claim 1 whih deals with the highly biasedbehavior of a weakened variant of the PRGA, applied to a b-onserving permu-tation. Next, we will argue that the pre�x of the output of the original PRGAis highly orrelated to the pre�x of the swapless variant (on the same initialpermutation), whih implies the existene of biases in the PRGA distributionfor these weak keys.Claim 1 Let RC4� be a weakened variant of RC4 with no swap operations. Letq � n, b def= 2q and S0 be a b-onserving permutation. Let fXtg1t=1 be the outputsequene generated by applying RC4� to S0, and xt def= Xt mod b. Then thesequene fxtg1t=1 is onstant.Sine there are no swap operation, the permutation does not hange and re-mains b-onserving throughout the generation proess. Notie that all the values3 if a value is pointed to by j before the swap, it will not be used as S[i℄ (before theswap) for at least N � 1 rounds, and in partiular it will not a�et the values of jduring these rounds.

of S are known (mod b), as well as the initial indies i = j = 0 � 0 (mod b), andthus the round operation (and the output values) an be simulated (mod b),independently of S. Consequently the output sequene (mod b) is onstant, anddeeper analysis implies that it is periodi with period 2b, as exempli�ed in Figure3 for q = 1.i j S[i℄ S[j℄ S[i℄ + S[j℄ Out0 0 0 0 0 /1 1 1 1 0 00 1 0 1 1 11 0 1 0 1 10 0 0 0 0 01 1 1 1 0 0...Fig. 3. The rounds of RC4�, ap-plied to a 2-onserving permutation
1st word 1 � � � 1 1 12nd word n � � � 3 2 13th word n � � � 3 2 1...̀ th word n � � � 3 2 1Fig. 4. The stage in whih eah oneof the bits is exposed during the re-lated key attakReall that at eah step of the PRGA, S hanges in at most two loations, andthus we an expet the pre�x of the output stream generated by RC4 from somepermutation S0, to be highly orrelated with the stream generated from the sameS0 (or a slightly modi�ed one) by RC4�. In partiular the stream generated byRC4 from an almost b-onserving permutation is expeted to be highly orrelatedwith the onstant substream fxtg from Claim 1. This orrelation is demonstratedin Figure 8, where the funtion h �! Pr[1 � 8t � h Zt � xt mod 2q℄ (for speial2q-exat keys) is empirially estimated for n = 8, ` = 16 and di�erent q's. Forexample, a speial 2-exat key ompletely determines 20 output bits (the lsb'sof the �rst 20 outputs) with probability 2�4:2 instead of 2�20, and a speial16-exat key ompletely determines 40 output bits (4 lsb's from eah of the �rst10 outputs) with probability 2�2:3, instead of 2�40.We have thus demonstrated a strong probabilisti orrelation between somebits of the seret key and some bits of the output stream for a large lass of weakkeys. In the next setion we desribe how to use this orrelation to ryptanalyzeRC4.5 Cryptanalyti Appliations of the Invariane Weakness5.1 Distinguishing RC4 Streams from RandomnessIn [MS01℄ Mantin and Shamir desribed a signi�ant statistial bias in the se-ond output word of RC4. They used this bias to onstrut an eÆient algorithmwhih distinguishes between RC4 outputs and truly random sequenes by ana-lyzing only one word from O(N) di�erent outputs streams. This is an extremely

eÆient distinguisher, but it an be easily avoided by disarding the �rst twowords from eah output stream. If these two words are disarded, the best knowndistinguisher requires about 230 output words (see [FM00℄). Our new observationyields a signi�antly better distinguisher for most of the typial key sizes. Thenew distinguisher is based on the fat that for a signi�ant fration of keys, asigni�ant number of initial output words ontain an easily reognizable pattern.This bias is attened when the keys are hosen from a uniform distribution, butit does not ompletely disappear and an be used to onstrut an eÆient dis-tinguisher even when the �rst two words of eah output sequene are disarded.Notie that the probability of a speial 2q-exat key to be transformed into a2q-onserving permutation, does not depend of the key length ` (see Theorem 2).However, the number of predetermined bits is linear in `, and onsequently thesize of this bias (and thus the number of required outputs) also depends on `. InFigure 5 we speify the quantity of data required for a reliable distinguisher, fordi�erent key sizes. In partiular, for 64 bit keys the new distinguisher requiresonly 221 data instead of the previously best number of 230 output words.It is important to notie that the spei�ed output patterns extend over severaldozen output words, and thus the quality of the distinguisher is almost una�etedby disarding the �rst few words. For example, disarding the �rst two wordsauses the data required for the distinguisher to grow by a fator of between 20:5and 22 (depending on `). Another important observation is that the biases in thelsb's distribution an be ombined in a natural way with the biased distributionof the lsb's of English texts into an eÆient distinguisher of RC4 streams fromrandomness in a iphertext-only attak in whih the attaker does not know theatual English plaintext whih was enrypted by RC4. This type of distinguishersis disussed in Appendix B.5.2 RC4 has Low Sampling ResistaneBiryukov, Shamir and Wagner de�ned in [BSW00℄ a new seurity measure ofstream iphers, whih they denoted as their Sampling Resistane. The strongorrelation between lasses of RC4 keys and orresponding output patterns anbe used to prove that RC4 has relatively low sampling resistane, whih improvesthe eÆieny of time/memory/data tradeo� attaks. Further details an be foundin Appendix C.6 RC4 Key Setup and the First Word OutputIn this setion, we onsider related key attaks where the attaker has aess tothe values of all the bits of ertain words of the key. In partiular, we onsider thease where the key presented to the KSA is made up of a seret key onatenatedwith an attaker visible value (whih we will refer to as an Initialization Vetoror IV). We will show that if the same seret key is used with numerous di�erentinitialization vetors, and the attaker an obtain the �rst word of RC4 outputorresponding to eah initialization vetor, he an reonstrut the seret key with

minimal e�ort. How often he an do this, the amount of e�ort and the numberof initialization vetors required depends on the order of the onatenation, thesize of the IV, and sometimes on the value of the seret key. This observation isespeially interesting, as this mode of operation is used by several ommeriallydeployed enryption systems ([Rei01℄, [LMSon℄) and the �rst word of plaintextsis often an easily guessed onstant suh as the date, the sender's identity, et, andthus the attak is pratial even in a iphertext-only mode of attak. However,the weakness does not extend to the Seure Soket Layer protool that browsersuse.In terms of keystream output, this attak is interested only in the �rst wordof output from any given seret key and IV. Hene, we an simplify our modelof the output. The �rst output word depends only on three spei� permutationelements, as shown in the �gure below showing the state of the permutationimmediately after KSA. When those three words are as shown, the value labeledZ will be output as the �rst word.1 X X + YX Y ZIn addition, if the key setup reahes a stage where i is greater than or equalto 1, X = Si[1℄ and X + Y = Si[1℄ + Si[Si[1℄℄, then (if we model the remainingswaps in the key setup as random) with probability greater than e�3 � 0:05,none of the elements referened by these three values will partiipate in anyfurther swaps, and in that ase, the value S[S[1℄ +S[S[1℄℄℄ will be output as the�rst word. With probability less than 1 � e�3 � 0:95, at least one of the threevalues will partiipate in a swap, and be set to an e�etively random value, whihwill make the output value e�etively random. We will refer to this situation asthe resolved ondition. Our attak involves examining messages with spei� IVvalues suh that, at some point, the KSA is in a resolved ondition, and wherethe value of S[S[1℄ + S[S[1℄℄℄ gives us information on the seret key. Then, weobserve suÆiently many IV values that the atual value of S[S[1℄ + S[S[1℄℄℄ours detetably often.7 Details of the Known IV Attak7.1 IV Preedes the Seret KeyFirst onsider the ase where the IV is prepended to the seret key. In this irum-stane, assuming we have an I word IV, and a seret key (K[0℄;K[1℄; : : :K[`�1℄),we attempt to derive information on a partiular word B of the seret key (K[B℄)by searhing for IV values suh that, after the �rst I steps, SI [1℄ < I andSI [1℄ + SI [SI [1℄℄ = I +B. Then, with high likelihood (probability � e� 2BN if wemodel the intermediate swaps as random), we will be in a resolved onditionafter step I + B, and then the most probable output value will beOut = SI+B�1[jI+B ℄ = SI+B�1[jI+B�1 +K[B℄ + SI+B�1[I +B℄℄

Or, in other words, if we know the value of jI+B�1 and SI+B�1, then given the�rst word output Out, we an predit the valueK[B℄ = S�1I+B�1[Out℄� jI+B�1 � SI+B�1[I + B℄where S�1t [X ℄ denotes the loation within the permutation St where the valueX appears. This predition is aurate more than 5% of the time, and e�etivelyrandom less than 95% of the time. By olleting suÆiently many values fromdi�erent IVs, we an reonstrut K[B℄.In the simplest senario (3 word hosen IVs), the attak works as follows4:suppose that we know the �rst A words of the seret key (K[3℄; : : : ;K[A + 2℄,with A = 0 initially), and we want to know the next word K[A+ 3℄. We exam-ine a series of IVs of the form (A + 3; N � 1; X) for approximately 60 di�erentvalues for X . At the �rst step, j is advaned by A + 3, and then S[i℄ and S[j℄are swapped, resulting in the key setup state whih is shown shematily below,where the top array is the ombined IV and seret key presented to the KSA,and the bottom array is a portion of the permutation, and where the positionsof the i, j variables are indiated.A+ 3 N � 1 X K[3℄ K[A+ 3℄0 1 2 A+ 3A+ 3 1 2 0i0 j0Then, on the next step, i is advaned, and then the advane on j is omputed,whih happens to be 0. Then, S[i℄ and S[j℄ are swapped, resulting in the belowstruture:A+ 3 N � 1 X K[3℄ K[A+ 3℄0 1 2 A+ 3A+ 3 0 2 1i1 j1Then, on the next step, j is advaned by X + 2, whih implies that eah dis-tint IV assigns a di�erent value to j, and thus beyond this point, eah IV atsdi�erently, approximating the randomness assumption made above. Sine theattaker knows the value of X and K[3℄; : : :K[A+2℄, he an ompute the exatbehavior of the key setup until he reahes step A + 3. At this point, he knowsthe value of jA+2 and the exat values of the permutation SA+2. If the value atSA+2[0℄ or SA+2[1℄ has been disturbed, the attaker disards this IV. Otherwise,j is advaned by SA+2[i℄ +K[A+3℄, and then the swap is done, resulting in thebelow struture:A+ 3 N � 1 X K[3℄ K[A+ 3℄0 1 2 A+ 3A+ 3 0 S[2℄ S[j℄iA+34 This senario was �rst published by Wagner in [Wag95℄

The attaker knows the permutation SA+2 and the value of jA+2. In addition, ifhe knows the value of SA+3[A+ 3℄, he knows its loation in SA+2, whih is thevalue of jA+3, and hene he would be able to ompute K[A+ 3℄. We also notethat iA+3 has now swept past 1, SA+3[1℄ and SA+3[1℄+SA+3[SA+3[1℄℄, and thusthe resolved ondition exists, and hene with probability p > 0:05, by examiningthe value of the �rst word of RC4 output with this IV, the attaker will obtainthe orret value of K[A+ 3℄. Hene, by examining approximately 60 IVs withthe above on�guration, the attaker an rederive K[A℄ with a probability ofsuess greater than 0.5.By iterating the above proess aross the seret key, the attaker an rederive` words of seret key using 60` hosen 3 word IVs.The next thing to note is that the attak works for IVs other than those inthe spei� (A + 3; N � 1; X) form. Any I word IV that, after I steps, leavesSI [1℄ < I and SI [1℄ + SI [SI [1℄℄ = I + B will suÆe for the above attak. Inaddition, sine the attaker is able to simulate the �rst I steps of the key setup,he is able to determine whih IVs have this property. By examining all IVs thathave this property, we an extend this into a known IV attak, without usingan exessive number of IVs. The probabilities to �nd the next word, and theexpeted number of IVs needed to obtain 60 IVs of the proper form, are givenin Figure 6 at the end of this paper.7.2 IV Follows the Seret KeyIn the ase that the IV is appended to the seret key, we need to take a di�erentapproah. The previous analysis attaked individual key words. When the IVfollows the seret key, what we do instead is selet IVs that give us the state ofthe permutation at an early phase of the key setup, suh as immediately afterthe seret key has been used for the �rst time. Given that only a few swapshave ourred up to that point, it is reasonably straight-forward to reonstrutthose swaps from the permutation state, and hene obtain the seret key (seeAppendix D for one suh method).To illustrate the attak in the simplest ase, suppose we have an A wordseret key, and a 2 word IV. Further suppose that the seret key was weak inthe sense that, immediately after A steps of KSA, SA[1℄ = X , X < A, andX + SA[X ℄ = A. This is a low probability event (p � 0:00062 if A = 13),but it depends only on the seret key. For suh a weak seret key, the attakeran assume the value of jA�1 + SA�1[A℄, and then examine IVs with a �rstword of W = Y � (jA�1 + SA�1[A℄). With suh IVs, the value of jA will be thepreseleted value Y . Then, S[A℄ and S[Y ℄ are swapped, and so SA[A℄ = AA�1[Y ℄.Here, assuming Y was neither 1 nor SA[1℄, then the resolved ondition has beenestablished, and with probability > 0:05, SA�1[Y ℄ will be the �rst word output.Then, by examining suh IVs with the seond word being at least 60 di�erentvalues, we an observe the output a number of times and derive the value ofSA[Y ℄ with good probability. By seleting all possible values of Y, we an diretlyobserve the state of the SA permutation, from whih we an rederive the seretkey. We will denote this result as key reovery.

If X+SA[X ℄ = A+1, a similar analysis would appear to apply. By assumingSA[A℄, SA[A + 1℄ and jA, we an swap SA+1[Y ℄ into SA+2[A + 1℄ for N � 2distint IVs for any partiular Y . However, the value of jA+2 is always the samefor any partiular Y , and so the probabilities that a partiular IV outputs thevalue S[Y ℄ is not independently distributed. This e�et auses the reading of thepermutation state to be 'noisy', that is, for some values of Y , we see S[Y ℄ asthe �rst word far more often than our analysis expeted, and for other values ofY , we see it far less often. Beause of this, some of the entries SA+1[Y ℄ annotbe reliably reovered. Simulations assuming a 13 word seret key and n = 8have shown that an average of 171 words of the SA permutation state an besuessfully reonstruted, inluding an average of 8 words of (SA[0℄; : : : ; SA[12℄),whih immediately give you e�etively 8 key words. With this information, thekey is redued enough that it an be brute fored. We will denote this result askey redution.If we have a 3 word IV, then there are more types of weak seret keys. Forexample, onsider a seret key where SA[1℄ = 1 and SA[A℄ = A. Then, by as-suming jA, we an examine IV where the �rst word has a value W so that thenew value of jA+1 is 1, and so SA[1℄ and SA[A℄ are swapped, leaving the stateafter A+ 1 steps to be:K[0℄ K[1℄ K[A� 1℄ W X Z0 1 A� 1 A A+ 1 A+ 2SA[0℄ A SA[A� 1℄ 1 SA[A+ 1℄ SA[A+ 2℄jA+1 iA+1Then, by assuming SA[A + 1℄ (whih with high probability is A + 1, andwill always be at most A + 1), we an examine IVs with the seond word X =Y � (1 + SA[A + 1℄), for an arbitrary Y , whih will swap the value of SA[Y ℄into SA+1[A + 1℄. Assuming Y isn't either 1 or A, then the resolved onditionhave been set up, and using a number of values for the third IV word Z, we andedue the value of SA+1[Y ℄ for an arbitrary Y , giving us the permutation afterA steps.There are a number of other types of weak keys that the attaker an takeadvantage of, summarized in Figure 7 found at the end of this paper.The last weak seret key listed in Figure 7 is espeially interesting, in thatthe tehnique that exposes the weakness is rather di�erent than that of the otherweak seret keys listed. Immediately after A steps, the state is:K[0℄ K[1℄ K[X ℄ W Z0 1 X A A+ 1SA[0℄ X SA[X ℄ Z SA[A+ 1℄iAThe initial IV word auses SA[X ℄ and SA[A℄ to be swapped, leaving the stateas:

K[0℄ K[1℄ K[X ℄ W Z0 1 X A A+ 1SA[0℄ X Z SA[X ℄ SA[A+ 1℄iANow, to inquire about the value of SX+Z [Y +Const℄, we examine numerousIVs with seond and third words that all set the value of jA+3 to be Y . The KSAwill ontinue for X + Z � (A + 3) more steps until i now points to the elementSX+Z [X + Z℄. At this point, sine we haven't gone through a great number ofsteps sine we knew the value of j (sine X+Z�(A+3)� A�4), then with highprobability, jX+Z+1 = Y +Const, where Const is a onstant term that dependsonly on the state of the permutation SA+1. If this is true, then SX+Z+1[X+Z℄ =SX+Z [Y + onst℄, and if the elements S[1℄ and S[X ℄ have not been disturbed(again, this happens with high probability), the resolved ondition has beenahieved, and the �rst output word will be biased towards SX+Z [Y + onst℄.In addition, beause the value of onst will be the same independent of Y , itsvalue an easily be determined, thus allowing the attaker to observe many ofthe values of SX+Z . This lass of weak keys requires far more known IVs toexploit, but also ours relatively frequently.If we have a 4 word5 IV, then the same general approah as the previousanalysis an be used to reover virtually all seret keys, given suÆient IVs. First,we assume jA�1, SA�1[A℄, SA�1[A+1℄, SA�1[A+2℄, SA�1[A+3℄ 6. Then, basedon this assumption, we searh for IVs that, after A+ 4 steps, sets SA+4[1℄ = Xand SA+4[X ℄ = Z for X;Z < A + 4; X + Z � A + 4, and we note the value ofjA+4 = Y . Then, we save the value of X +Z, the value Y and the value outputas the �rst word for that partiular IV. With nontrivial probability, the value ofthis word will be SX+Z [Y + onstX+Z ℄, where onstX+Z is a onstant term thatdepends on the seret key, and the value X+Z. Sine that value is independentof the IV, we an ollet numerous possible values of SX+Z [Y + onstX+Z ℄ forvarious values of X + Z, and use that to �rst reonstrut onstX+Z , and thenreonstrut SX+Z .8 Related-Key Attaks on RC4In this setion, we disuss two related-key attaks based on weaknesses disussedpreviously in this paper. They work within the following model: the attaker isgiven a blak box that has a randomly hosen RC4 key K inside it, an outputbutton and an input tape of jKj words. In eah step the attaker an either pressthe output button to get the next output word, or write � on the tape, whihauses the blak-box to restart the output generation proess with a new keyde�ned as K 0 = K � �. The purpose of the attaker is to �nd the key K (orsome information about it).5 This approah generalizes in the obvious way to longer IVs.6 Note that SA�1[x℄ � x for x � A. This limits the size of the searh required.

8.1 Related-Key Attak Based on the Invariane WeaknessThis attak works when the number of key words, is a power of two. It onsists ofn stages where in stage q the qth bit of every key word is exposed7. The prediateChekKey takes as input an RC4 blakbox and a parameter q (the stage number)and deides whether the key in the box is speial 2q-exat. This purpose an beahieved by randomly sampling key bits that are irrelevant for the 2q-exatness ofthe key and estimating the expeted length of q-patterned output. For a speial2q-exat key the expeted length will be signi�antly longer than in a randomoutput (where it is less than 2) and thus ChekKey works in time O(1). Theproedure Expand takes as input an RC4 blakbox and a parameter q (the stagenumber), assumes that the key in the box is speial 2q�1-exat, and makes itspeial 2q-exat. The method for doing so is by enumerating all the possibilitiesfor the qth bits (2`�1 suh possibilities) and invoking ChekKey to deide whenthe key in the box is speial 2q-exat. Expand works in a slightly di�erent wayfor q = 1 and q = n. For q = 1, exept for the lsb's, it determines the ompleteK[0℄ (by foring it to 1) and msb(K[1℄). For q = n, there is only one 2n-exatkey and onsequently we an alulate the output produed from this key andreplae ChekKey by simple omparison. The time omplexity of this stage isO(2n+`) for q = 1 and O(2`�1) for any other q.The total time required for the attak is thus O(2n+`) + (n � 1)O(2`) =O(2n+`). For typial RC4n=8 key with 32 bytes, the omplexity of exhaustivesearh is ompletely impratial (2256), whereas the omplexity of the new attakis only O(2n+`) = O(240).8.2 Related-Key Attak Based on Known IV WeaknessIn this setion we use the known IV weaknesses to develop an eÆient relatedkey attak on RC4.The attak onsists of 3 stages, where in the �rst two stages we gain informa-tion on the �rst three words of the seret key, and in the third stage we iteratedown the key, and expose eah word of the key suessively. The stages of theattak are as follows:Step 1 This step attempts to �nd values of K[0℄, K[1℄ suh that S1[1℄ = 1,and reveal the value of K[2℄. The proedure is to selet random values of(X;Y), and for eah suh random value, write onto the tape 240 vetorswith the initial four words (X;Y; Z;W) for Z 2 f0; N=4; N=2; 3N=4g andwith 60 distint random values of W , and for eah suh vetor, press theoutput button. If X and Y are suh that S1[1℄ = 1 (for the modi�ed key),then the output of the �rst word will be biased towards 3+(K[2℄�Z), unlessthat value happens to be 1. Hene, for at least 3 of the seleted values ofZ, the �rst word outputs will be biased towards one of onst, onst+N=4,onst + N=2, onst + 3N=4. This is detetable, and also by examining thevalue of onst, the attaker an reonstrut the value of K[2℄. We expet totry N random values of (X;Y) before �nding a pair that is appropriate.7 In fat, K[1℄ is fully revealed during the �rst stage (see Figure 4)

Step 2 This step attempts to �nd the values of K[0℄, K[1℄. The proedure is towrite on the tape 60 vetors with the initial four words (X;Y; Z;W), whereX , Y are the values reovered in the previous step, Z = (N � 3) � K[2℄,and with 60 distint random values of W , and for eah suh vetor, pressthe output button. This partiular initial sequene assures that S2[1℄ = 1and S2[2℄ = S1[0℄ = K[0℄, and hene the output will be biased towards K[0℄.One that has been reovered, K[1℄ an be omputed.Step 3 This step iteratively reovers individual words of the key. It operatesby running a subproedure that assumes that we have already reovered(K[0℄; : : : ;K[A� 1℄), and want to learn the value of K[A℄. The proedure isto write 60 vetors that have the property that, given the known values of(K[0℄; : : : ;K[A � 1℄), that SA�1[1℄ = X < A and X + SA�1[X ℄ = A. With60 suh vetors, we an use the proedure shown in 7.1 to rederive K[A℄.The total time required for the attak is thus (beause 2n � `):Step1 + Step2 + (`� 3) � Step3 = O(2n+8) + 26 + (`� 3)26 = O(2n+8)For a RC4 key with n = 8 the time omplexity is O(216) and is essentiallyindependent of the key length.8.3 Comparing the AttaksBoth attaks are able to ompletely reonstrut the randomly hosen RC4 key8with a number of hosen keys and amount of work that is signi�antly belowthat of brute fore (exept for extremely short RC4 keys). The �rst attak salesupwards as the key grows longer, while the time omplexity of the seond attakis independent of key length, with a ross-over point at ` = 8.However, due to the seond word weakness, future implementations of RC4are likely to disard some pre�x of the output stream, and in this ase the seondattak beomes diÆult to apply { output word x depends on 2x+1 permutationelements immediately after KSA, and all the 2x+1 elements must our beforet for the resolved ondition to hold. On the other hand, the �rst attak extendswell, in that the probability of the output words being patterned drops modestlyas the number of disarded words inreases.9 DisussionSetion 3 desribes an interesting weakness of RC4 whih results from the sim-pliity of its key sheduling algorithm.We reommend to neutralize this weaknessby disarding the �rst N words of eah generated stream. After N rounds, everyelement of S is swapped at least one and the permutation S and the index jare expeted to be "independent" of the initialization proess.Setion 6 desribes a weakness of RC4 in a ommon mode of operation inwhih attaker visible IV's are onatenated with a �xed seret key. It is easy8 the �rst attak works only for some key lengths.

to extend the attak to other simple types of ombination operators (e.g., whenwe XOR the IV and the �xed key) with essentially the same omplexity. Wereommend to neutralize this weakness by avoiding this mode of operation, orby using a seure hash to form the key presented to the KSA from the IV andseret key.A Applying The Attak to WEP-like CryptosystemsThe Wired Equivalent Privay (WEP) protool is designed to provide privayto paket based wireless networks based on the 802.11 standard (see [LMSon℄).It enrypts by taking a seret key and a per-paket 3 byte IV, and using theIV followed by the seret key as the RC4 key. Then, it transmits the IV, andthe RC4 enrypted payload. By using the results from Setion 7.1, we an showhow, by examining enough iphertext pakets, to reonstrut the seret key fora WEP-like ryptosystem. Note that we have not attempted to attak an atualWEP onnetion, and hene do not laim that WEP is atually vulnerable tothis attak.We assume that the attaker is able to retrieve the �rst byte of the RC4output from eah paket9. By the analysis done in setion 7.1, to reover keybyte B, the attaker needs to know the previous key bytes, and then searh forIVs that sets up the permutation suh thatX = SB+3[1℄ < B + 3 (1)X + SB+3[X ℄ = B + 3With 60 suh IVs, the attaker an rederive the key byte with reasonableprobability of suess. The number of pakets required to obtain that numberof IVs depends on the exat IVs that the sender uses. Although the 802.11standard does not speify how an implementation should generate these IVs,ommon pratie is to use a ounter to generate them.A.1 Analysis of IVs Generated by a Little Endian CounterIf the IVs are generated by a multibyte ounter in little endian order (and henethe �rst byte of the IV inrements the fastest), then the attaker an searh forIVs of the form (B; 255; N) for 3 � B < 8. If he an ollet these for 60 di�erentvalues of N, then he an derive the seret key with little work. This requiresapproximately 4,000,000 pakets.9 Beause of the payload format used with 802.11, the attaker typially does knowthe �rst byte of eah plaintext payload, and hene is able to derive the �rst byte ofRC4 output.

A.2 Analysis of IVs Generated by a Big Endian CounterIf the IVs are generated by a multibyte ounter in big endian order (and henethe last byte of the IV inrements the fastest), then the attaker an, as above,searh for IVs of the form (B; 255; N). This requires approximately 1,000,000pakets to ollet the requisite IVs, assuming that the ounter starts from zero.However, if the ounter doesn't start from zero, the attaker has an alter-native strategy available to him. He an assume the �rst several bytes of seretkey, and then searh for IVs that set up the permutation as in Equation 1. Ifthe attaker assumes the �rst two bytes of seret key, then for eah initial IVbyte, there are approximately 4 settings of the remaining two bytes that setup the permutation as required to rederive a partiular key byte. Hene, withapproximately 1,000,000 pakets, and an additional 216 work fator, he an stillrederive the key.It is ommon pratie in the industry to extend the length of the WEPseret key (whih is spei�ed as 40 bit). Beause the above attaks reover eahkey byte individually, the omplexity of the attak grows linearly rather thanexponentially with the key length, and thus even an extremely long key is notimmune to this attak.B Ciphertext-Only Distinguishers based on theInvariane WeaknessThe distinguishers we presented in Setion 5.1, as well as most of the distin-guishers mentioned in the literature (for RC4 and other stream iphers) assumeknowledge of the plaintext in order to isolate the XORed key stream.However, in pratie the only information the attaker has is typially somestatistial knowledge about the plaintext, e.g., that it ontains English text.Combining the non-random behaviors of the plaintext and the key-stream is notalways possible, and there are ases where XORing biased streams result witha totally random stream, e.g. when one stream is biased in its even positionsand the other stream is biased in its odd positions. We prove here that if theplaintexts are English texts, it is easy to onstrut a iphertext-only distinguisherfrom our biases. The intuition of this onstrution is that the biases desribedin Setion 5.1 are in the distribution of the lsb's, and onsequently they an beombined with the non-random distribution of the lsb's of English texts.There are many major biases in the distribution of the lsb's of English texts,and they an be ombined with biases of the key-stream words in various ways.In Theorem 3, we show how to ombine the distribution of the �rst lsb of theRC4 output stream, with the �rst order statistis of English texts10 :Theorem 3 Let C be the iphertext generated by RC4 from a random key andthe ASCII representation of plaintexts, distributed aording to the �rst order10 Sine the purpose of the theorem is only to demonstrate this approah , we ignorethe fat that the distribution of the �rst haraters in an English sentene di�ersfrom the distribution of mid-text haraters.

statistis of English texts. Let p be the probability of a random key to be speial2-exat. Then C an be distinguished from a random stream by analyzing about200p2 output words.For example, for RC4n=8 with 8 byte keys, p = 2�16, whih implies a reliableiphertext-only distinguisher that works with less than 240 data. The proof ofTheorem 3 is based on the observation that the lsb of a random English textharater is zero with probability of about 55%. The formal proof is omitted dueto spae limitations.It is important to note that Theorem 3 does not use all the statistial infor-mation whih is available in either the key-stream or the plaintext distributions,and onsequently does not represent the best possible attak.C The Sampling Resistane of RC4Most of the Time/Memory/Data tradeo� attaks on stream iphers are basedon the following paradigm. The attaker keeps a database of [state,output℄ pairs(sorted by output) and lookups every subsequene of the output stream in thisdatabase. When a (suÆiently long) database sequene is loated in the output,the attaker an onlude that the atual state is the one stored along with thissequene and predit the rest of the stream.A drawbak of this approah is that the large database must be stored in ahard disk(s) whose random aess time is about a million times slower than aomputational step. To improve that attak we an keep on disk only states thatare guaranteed to produe outputs with some rare but easy reognizable property(e.g., starting with some pre�x �). In this ase only output sequenes that havethis property have to be searhed in the database, and thus the expeted timeand the expeted number of disk probes is signi�antly redued.In general, produing a pair [state,output℄ with suh a rare property ostsmuh more than produing a random pair. O(1p) random states are required to�nd a single pair, where p is the probability of a random output to have this prop-erty. However, if we an eÆiently enumerate states that produe suh outputs,the number of sampled states dereases dramatially, and this method an beapplied without signi�ant additional ost during the preproessing stage. Thesampling resistane of a stream ipher provides a lower bound on the eÆienyof suh enumeration.Suh an attak an be applied to RC4 in two ways, based on the KSA andPRGA parts. An attak on the generation part onstruts a database of pairs[RC4 state, output substring℄ and analyzes all the substrings along a single out-put stream. The database onstrution is very simple sine it is easy to enumeratestates whih produe outputs that have some onstant pre�x. However, this enu-meration seems to be useless due to the huge e�etive key of this part (1684 bits)whih makes suh a tradeo� attak ompletely impratial. A more promisingapproah is based on the KSA part whih uses a key of 40-256 bits and might bevulnerable to tradeo� attaks. In this ase, the pairs in the database are [seret

key, pre�x of the output stream℄, and the attak requires pre�xes from a largenumber of streams (instead of a single long stream).The orrelation desribed in Setion 4 provides an eÆient sampling of keysthat are more likely to produe output pre�xes of the patterned type spei�edabove (onstant (mod b)).For example, onsider the problem of sampling M keys whih are trans-formed by the KSA into streams whose �rst �ve words are �xed (mod 16). Thisproperty of random streams has probability of 2�20, and the expeted numberof disk probes during the atual attak is redued by this fator. For streamiphers with high sampling resistane, suh a �lter would inrease the prepro-essing time by a fator of one million, as one would have to sample a millionrandom keys in order to �nd a single \good" key. For RC4 (due to the invarianeweakness), the preproessing time inreases by a fator of less than four, as morethan one quarter of the exat speial keys produe suh streams. Consequently,the preproessing stage is aelerated by a fator of 218.To summarize this setion, we proved that RC4 has relatively low SamplingResistane, whih greatly improves the eÆieny of tradeo� attaks based on itsKSA.D Deriving the Seret Key from an Early PermutationStateGiven the values SA[0℄; : : : ; SA[A�1℄, one method to �nd all values ofK[0℄; : : : ;K[A�1℄ that result in suh a permutation is:i = 0S = f0; : : : ; N � 1gFor i = 0 : : : A� 1X = S�1[SA[i℄℄If i < X < ABranh over all values of 0 � X < A s.t. X � I orS[X ℄ 6= SA[X ℄, running the remaining part of thisalgorithm for all suh values.K[i℄ = X � j � S[i℄j = XSwap(S[i℄, S[j℄)Verify that fS[0℄; : : : ; S[A� 1℄g = fSA[0℄; : : : ; SA[A� 1℄gThe number of times this algorithm will perform an iteration is bounded byA�+1, where � if the number of values 0 � x < A where SA[x℄ < A. Beause �is typially quite small, this algorithm is typially eÆient.An algorithm with a better lower bound on run time ould be given by usingthe values of SA[A℄; : : : ; SA[N � 1℄.

Referenes[BSW00℄ A. Biryukov, A. Shamir, and D. Wagner. Real time ryptanalysis of a5/1on a p. In FSE: Fast Software Enryption, 2000.[FM00℄ Fluhrer and MGrew. Statistial analysis of the alleged RC4 keystreamgenerator. In FSE: Fast Software Enryption, 2000.[Gol97℄ Goli�. Linear statistial weakness of alleged RC4 keystream generator.In EUROCRYPT: Advanes in Cryptology: Proeedings of EUROCRYPT,1997.[GW00℄ A. L. Grosul and D. S. Wallah. a related-key ryptanalysis of RC4. June2000.[KMP+98℄ Knudsen, Meier, Preneel, Rijmen, and Verdoolaege. Analysis methods for(alleged) RC4. In ASIACRYPT: Advanes in Cryptology { ASIACRYPT:International Conferene on the Theory and Appliation of Cryptology.LNCS, Springer-Verlag, 1998.[MT98℄ Mister and Tavares. Cryptanalysis of RC4-like iphers. In SAC: AnnualInternational Workshop on Seleted Areas in Cryptography. LNCS, 1998.[Roo95℄ A. Roos. A lass of weak keys in the RC4 stream ipher. September 1995.

` q b k1a k2b p PRNDd PRC4e Data4 1 2 12 15 2�3 2�15 2 � 2�15 2156 1 2 14 18 2�4 2�18 2 � 2�18 2188 1 2 16 21 2�5 2�21 2 � 2�21 22110 1 2 18 24 2�6 2�24 2 � 2�24 22412 1 2 20 27 2�7 2�27 2 � 2�27 22714 1 2 22 30 2�8 2�30 2 � 2�30 23016 1 2 24 34 2�10 2�34 2 � 2�34 234Fig. 5. Data required for a reliable distinguisher, for di�erent key sizesa number of predetermined bits (q(`� 1) + n + 1)b number of determined output bits probability of these k1 key bits to determine these k2 output bits (taken from Figure 8)d = 2�k2e � PRND + 2�k1p
IV Length Probability Expeted IVs required3 4:57 � 10�5 13100004 4:50 � 10�5 13300005 1:65 � 10�4 3640006 1:64 � 10�4 3660007 2:81 � 10�4 2130008 2:80 � 10�4 2140009 3:96 � 10�4 15200010 3:94 � 10�4 15200011 5:08 � 10�4 11800012 5:04 � 10�4 11900013 6:16 � 10�4 9750014 6:12 � 10�4 9810015 7:21 � 10�4 8320016 7:18 � 10�4 83600Fig. 6. For various prepended IV and known seret key pre�x lengths, the probabilitythat a random IV will give us information on the next seret key word, and the expetednumber of IVs required to derive the next seret key word.

IV SettingsCondition First Seond Third Probability ResultSA[1℄ = 1 Swap with 1 Swap with Y Cyle 0.0037 Key reoverySA[A℄ = ASA[1℄ = 2 Swap with 1 Cyle Swap with Y 0.0070 Key redutionSA[A+ 1℄ = A+ 1SA[1℄ = X < A Swap with Y Cyle Cyle 0.0007 Key reoverySA[X℄ +X = ASA[1℄ = X < A Cyle Swap with Y Cyle 0.0009 Key reoverySA[X℄ +X = A+ 1SA[1℄ = X < A Cyle Cyle Swap with Y 0.0007 Key redutionSA[X℄ +X = A+ 2SA[1℄ = A Swap with Swap with Y Cyle 0.0037 Key reoveryS�1A [1℄SA[1℄ = A+ 1 Swap with Y Swap with Cyle 0.0036 Key reoveryS�1A [N � 1℄SA[1℄ = A+ 2 Cyle Swap with Y Swap with 0.0038 Key redutionS�1A [N � 1℄SA[1℄ = N � 2 Swap with Y Cyle Swap with 1 0.0034 Key redutionSA[A+ 2℄ = A+ 2SA[1℄ = N � 1 Swap with Y Swap with 1 Cyle 0.0036 Key reoverySA[A+ 1℄ = A+ 1SA[1℄ = X < A Swap with X Cyle Cyle 0.1007 Key redutionSA[A℄ = ZX + Z > A+ 2Fig. 7. Weak seret keys with 3 word post�x IVs. Listed are the onditions on the SApermutation that distinguish them, the IV properties that the attaker searhes for toreveal S[Y ℄, the probability that this lass of weak key will our with n = 8 and a 16word seret key, and the result of the attak on the weak key.

0 10 20 30 40 50 60
−30

−25

−20

−15

−10

−5

0

L
o

g
 o

f
th

e
 p

ro
b

a
b

ili
ty

 o
f

p
a

tt
e

rn
e

d
 p

re
fix

 o
f
si

ze
 h

h − size of the patterned prefix

q=1
q=2
q=3
q=4

Fig. 8. This graph demonstrates the probabilities of speial keys (2q-exat with K[0℄ =1, msb(K[1℄ = 1)) of RC4n=8;`=16 to produe streams with long patterned pre�xes

