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t. In this paper we present several weaknesses in the key s
hedul-ing algorithm of RC4, and des
ribe their 
ryptanalyti
 signi�
an
e. Weidentify a large number of weak keys, in whi
h knowledge of a smallnumber of key bits suÆ
es to determine many state and output bitswith non-negligible probability. We use these weak keys to 
onstru
tnew distinguishers for RC4, and to mount related key atta
ks with pra
-ti
al 
omplexities. Finally, we show that RC4 is 
ompletely inse
ure in a
ommon mode of operation whi
h is used in the widely deployed WiredEquivalent Priva
y proto
ol (WEP, whi
h is part of the 802.11 standard),in whi
h a �xed se
ret key is 
on
atenated with known IV modi�ers inorder to en
rypt di�erent messages. Our new passive 
iphertext-only at-ta
k on this mode 
an re
over an arbitrarily long key in a negligibleamount of time whi
h grows only linearly with its size, both for 24 and128 bit IV modi�ers.1 Introdu
tionRC4 is the most widely used stream 
ipher in software appli
ations. It wasdesigned by Ron Rivest in 1987 and kept as a trade se
ret until it leaked out in1994. RC4 has a se
ret internal state whi
h is a permutation of all the N = 2npossible n bits words, along with two indi
es in it. In pra
ti
al appli
ations n = 8,and thus RC4 has a huge state of log2(28!� (28)2) � 1700 bits.In this paper we analyze the Key S
heduling Algorithm (KSA) whi
h derivesthe initial state from a variable size key, and des
ribe two signi�
ant weaknessesof this pro
ess. The �rst weakness is the existen
e of large 
lasses of weak keys,in whi
h a small part of the se
ret key determines a large number of bits ofthe initial permutation (KSA output). In addition, the Pseudo Random Gen-eration Algorithm (PRGA) translates these patterns in the initial permutationinto patterns in the pre�x of the output stream, and thus RC4 has the undesir-able property that for these weak keys its initial outputs are disproportionallya�e
ted by a small number of key bits. These weak keys have length whi
h isdivisible by some non-trivial power of two, i.e., ` = 2qm for some q > 01. When1 Here and in the rest of the paper ` is the number of words of K, where ea
h word
ontains n bits.



RC4n uses su
h a weak key of ` words, �xing n + q(` � 1) + 1 bits of K (as aparti
ular pattern) determines �(qN) bits of the initial permutation with prob-ability of one half and determines various pre�xes of the output stream withvarious probabilities (depending on their length).The se
ond weakness is a related key vulnerability, whi
h applies when partof the key presented to the KSA is exposed to the atta
ker. It 
onsists of theobservation that when the same se
ret part of the key is used with numerousdi�erent exposed values, an atta
ker 
an rederive the se
ret part by analyzingthe initial word of the keystreams with relatively little work. This 
on
atena-tion of a long term se
ret part with an atta
ker visible part is a 
ommonly usedmode of RC4, and in parti
ular it is used in the WEP (Wired Equivalent Pri-va
y) proto
ol, whi
h prote
ts many wireless networks. Our new atta
k on thismode is pra
ti
al for any key size and for any modi�er size, in
luding the 24 bitre
ommended in the original WEP and the 128 bit re
ommended in the revisedversion WEP2.The paper is organized in the following way: In Se
tion 2 we des
ribe RC4and previous results about its se
urity. In Se
tion 3 we 
onsider a slightly mod-i�ed variant of the Key S
heduling Algorithm, 
alled KSA�, and prove that aparti
ular pattern of a small number of key bits suÆ
es to 
ompletely determinea large number of state bits. Afterwards, we show that this weakness of KSA�,whi
h we denote as the invarian
e weakness, exists (in a weaker form) also inthe original KSA. In Se
tion 4 we show that with high probability, the patternsof initial states asso
iated with these weak keys also propagate into the �rstfew outputs, and thus a small number of weak key bits determine a large num-ber of bits in the output stream. In Se
tion 5 we des
ribe several 
ryptanalyti
appli
ations of the invarian
e weakness, in
luding a new type of distinguisher.In Se
tions 6 and 7 we des
ribe the se
ond weakness, whi
h we denote as theIV weakness, and show that a 
ommon method of using RC4 is vulnerable toa pra
ti
al atta
k due to this weakness. In Se
tion 8, we show how both theseweaknesses 
an separately be used in a related key atta
k. In the appendi
es, weexamine how the IV weakness 
an be used to atta
k a real system (appendix A),how the invarian
e weakness 
an be used to 
onstru
t a 
iphertext-only distin-guisher and to prove that RC4 has low sampling resistan
e (appendi
es B andC), and how to derive the se
ret key from an early permutation state (appendixD).2 RC4 and Its Se
urity2.1 Des
ription of RC4RC4 
onsists of two parts (des
ribed in Figure 1): A key s
heduling algorithmKSA whi
h turns a random key (whose typi
al size is 40-256 bits) into an initialpermutation S of f0; : : : ; N � 1g, and an output generation part PRGA whi
huses this permutation to generate a pseudo-random output sequen
e.The PRGA initializes two indi
es i and j to 0, and then loops over foursimple operations whi
h in
rement i as a 
ounter, in
rement j pseudo randomly,



ex
hange the two values of S pointed to by i and j, and output the value of Spointed to by S[i℄ + S[j℄2. Note that every entry of S is swapped at least on
e(possibly with itself) within anyN 
onse
utive rounds, and thus the permutationS evolves fairly rapidly during the output generation pro
ess.The KSA 
onsists of N loops that are similar to the PRGA round operation.It initializes S to be the identity permutation and i and j to 0, and applies thePRGA round operation N times, stepping i a
ross S, and updating j by addingS[i℄ and the next word of the key (in 
y
li
 order). We will 
all ea
h round ofKSA a step.KSA(K)Initialization:For i = 0 : : : N � 1S[i℄ = ij = 0S
rambling:For i = 0 : : : N � 1j = j + S[i℄ +K[i mod `℄Swap(S[i℄; S[j℄)
PRGA(K)Initialization:i = 0j = 0Generation loop:i = i+ 1j = j + S[i℄Swap(S[i℄; S[j℄)Output z = S[S[i℄ + S[j℄℄Fig. 1. The Key S
heduling Algorithm and the Pseudo-Random Generation Algorithm2.2 Previous Atta
ks on RC4Due to the huge e�e
tive key of RC4, atta
king the PRGA seems to be infea-sible (the best known atta
k on this part requires time that ex
eeds 2700). Theonly pra
ti
al results related to the PRGA deal with the 
onstru
tion of dis-tinguishers. Fluhrer and M
Grew des
ribed in [FM00℄ how to distinguish RC4outputs from random strings with 230 data. A better distinguisher whi
h re-quires 28 data was des
ribed by Mantin and Shamir in [MS01℄. However, thisdistinguisher 
ould only be used to mount a partial atta
k on RC4 in broad
astappli
ations.The fa
t that the initialization of RC4 is very simple stimulated 
onsiderableresear
h on this me
hanism of RC4. In parti
ular, Roos dis
overed in [Roo95℄ a
lass of weak keys that redu
es their e�e
tive size by �ve bits, and Grosul andWalla
h showed in [GW00℄ that for large keys whose size is 
lose to N words,RC4 is vulnerable to a related key atta
k.More analysis of the se
urity of RC4 
an be found in [KMP+98℄, [Gol97℄ and[MT98℄.2 Here and in the rest of the paper all the additions are 
arried out modulo N



3 The Invarian
e WeaknessDue to spa
e limitations we prove here the invarian
e weakness only for a sim-pli�ed variant of the KSA, whi
h we denote as KSA� and des
ribe in Figure 2.The only di�eren
e between them is that KSA� updates i at the beginning ofthe loop, whereas KSA updates i at the end of the loop. After formulating andproving the existen
e of this weakness in KSA�, we des
ribe the modi�
ationsrequired to apply this analysis to the real KSA.KSA(K)aFor i = 0 : : : N � 1S[i℄ = ii = 0j = 0Repeat N timesj = j + S[i℄ +K[i mod `℄Swap(S[i℄; S[j℄)i = i + 1
KSA�(K)For i = 0 : : : N � 1S[i℄ = ii = 0j = 0Repeat N timesi = i + 1j = j + S[i℄ +K[i mod `℄Swap(S[i℄; S[j℄)a KSA is rewritten in a way whi
h 
lari�es the relation to KSA�Fig. 2. KSA vs. KSA�3.1 De�nitionsDe�nition 1 Let S be a permutation of f0; : : : ; N � 1g, t be an index in S andb be some integer. Then if S[t℄ mod b� t, the permutation S is said to b-
onservethe index t. Otherwise, the permutation S is said to b-un
onserve the index t.Denote the permutation S and the indi
es i and j after round t of KSA� as St, itand jt respe
tively. Denote the number of indi
es that a permutation b-
onservesas Ib(S). For the sake of simpli
ity, we often write It instead of Ib(St).De�nition 2 A permutation S of f0; : : : ; N � 1g is b-
onserving if Ib(S) = N ,and is almost b-
onserving if Ib(S) � N � 2.De�nition 3 Let b; ` be integers, and let K be an ` words key. Then K is 
alleda b-exa
t key if for any index t K[t mod `℄ � (1� t) (mod b). In 
ase K[0℄ = 1and msb(K[1℄) = 1, K is 
alled a spe
ial b-exa
t key.Noti
e that for this 
ondition to hold, it is ne
essary (but not suÆ
ient) thatb j `.



3.2 The WeaknessTheorem 1 Let q � n and ` be integers and b def= 2q. Suppose that b j ` andlet K be a b-exa
t key of ` words. Then the permutation S = KSA�(K) isb-
onserving.Before getting to the proof itself, we will prove an auxiliary lemmaLemma 1 If it+1 � jt+1 (mod b), then It+1 = It.Proof: The only operation that might a�e
t S (and maybe I) is the swapping op-eration. However, when it+1 and jt+1 are equivalent (mod b), St+1 b-
onservesit+1 (jt+1) if and only if St b-
onserved jt (it). Thus the number of indi
es Sb-
onserves remains the same. utProof:(of Theorem 1) We will prove by indu
tion on t that for any 1 � t � N ,it turns out that Ib(St) = N and it � jt (mod b). This in parti
ular implies thatIN = N , whi
h makes the output permutation b-
onserving.For t = 0 (before the �rst round), the 
laim is trivial be
ause i0 = j0 = 0and S0 is the identity permutation whi
h is b-
onserving for every b. Supposethat jt � it and St is b-
onserving. Then it+1 = it + 1 andjt+1 = jt + St[it+1℄ +K[it+1 mod `℄ mod b� it + it+1 + (1� it+1) = it + 1 = it+1Thus, it+1 � jt+1 (mod b) and by applying Lemma 1 we get It+1 = It = N andtherefore St+1 is b-
onserving. utKSA� thus transforms spe
ial patterns in the key into 
orresponding pat-terns in the initial permutation. The fra
tion of determined permutation bits isproportional to the fra
tion of �xed key bits. For example, applying this resultto RC4n=8;`=6 and q = 1, 6 out of the 48 key bits 
ompletely determine 252 outof the 1684 permutation bits.3.3 Adjustments to KSAThe small di�eren
e between KSA� and KSA (see Figure 2) is essential in thatKSA, applied to a b-exa
t key, does not preserve the equivalen
e (mod b) of iand j even after the �rst round. Analyzing its exe
ution on a b-exa
t key givesj1 = j0 + S0[i1℄ +K[i1℄ = 0 + S0[0℄ +K[0℄ = K[0℄ mod b� 1 mod b6� 0 = i1and thus the stru
ture des
ribed in Se
tion 3.2 
annot be preserved by the 
y
li
use of the words of K. However, the invarian
e weakness 
an be adjusted to thereal KSA, and the proper modi�
ations are formulated in the following theorem:Theorem 2 Let q � n and ` be integers and b def= 2q. Suppose that b j ` and letK be a spe
ial b-exa
t key of ` words. ThenPr[KSA(K) is almost b-
onserving℄ � 2=5when the probability is over the rest of the key bits.



Due to spa
e limitations, the formal proof of this theorem (whi
h is basedon a detailed 
ase analysis) will appear only in the full version of this paper.However, we 
an explain the intuition behind this theorem by 
on
entrating onthe di�eren
es between Theorems 1 and 2, whi
h deal with KSA� and KSArespe
tively. During the �rst round, two deviations from KSA� exe
ution o
-
ur. The �rst one is the non-equivalen
e of i and j whi
h is expe
ted to 
ausenon-equivalent entries to be swapped during the next rounds, thus ruining thedeli
ate stru
ture that was preserved so well during KSA� exe
ution. The se
-ond deviation is that S b-un
onserves two of the indi
es, i1 = 0 and j1 = K[0℄.However, we 
an 
an
el the ij dis
repan
y by for
ing K[0℄ (and j1) to 1. In this
ase, the dis
repan
y in S[j1℄ (K[1℄) 
auses an improper value to be added toj, thus repairing its non-equivalen
e to i during the se
ond round. At this pointthere are still two un
onserved indi
es, and this aberration is dragged a
rossthe whole exe
ution into the resulting permutation. Although these 
orruptedentries might interfere with j updates, the pseudo-random j might rea
h thembefore they are used to update j (i.e., before i rea
hes them), and send them intoa region in S where they 
annot a�e
t the next values of j3. The probability ofthis lu
ky event is ampli�ed by the fa
t that the 
orrupted entries are i1 = 0whi
h is not tou
hed until the termination of the KSA due to its distan
e fromthe 
urrent lo
ation of i, and j2 = 1 +K[1℄ > N=2 (re
all that msb(K[1℄) = 1),that is far from i1 = 2, whi
h gives j many opportunities to rea
h it before idoes. The probability of N=2 pseudo random j's to rea
h an arbitrary value 
anbe bounded from below by 2/5, and extensive experimentation indi
ates thatthis probability is a
tually 
lose to one half.4 Key-Output CorrelationIn this se
tion we will analyze the propagation of the weak key patterns into thegenerated outputs. First we prove Claim 1 whi
h deals with the highly biasedbehavior of a weakened variant of the PRGA, applied to a b-
onserving permu-tation. Next, we will argue that the pre�x of the output of the original PRGAis highly 
orrelated to the pre�x of the swapless variant (on the same initialpermutation), whi
h implies the existen
e of biases in the PRGA distributionfor these weak keys.Claim 1 Let RC4� be a weakened variant of RC4 with no swap operations. Letq � n, b def= 2q and S0 be a b-
onserving permutation. Let fXtg1t=1 be the outputsequen
e generated by applying RC4� to S0, and xt def= Xt mod b. Then thesequen
e fxtg1t=1 is 
onstant.Sin
e there are no swap operation, the permutation does not 
hange and re-mains b-
onserving throughout the generation pro
ess. Noti
e that all the values3 if a value is pointed to by j before the swap, it will not be used as S[i℄ (before theswap) for at least N � 1 rounds, and in parti
ular it will not a�e
t the values of jduring these rounds.



of S are known (mod b), as well as the initial indi
es i = j = 0 � 0 (mod b), andthus the round operation (and the output values) 
an be simulated (mod b),independently of S. Consequently the output sequen
e (mod b) is 
onstant, anddeeper analysis implies that it is periodi
 with period 2b, as exempli�ed in Figure3 for q = 1.i j S[i℄ S[j℄ S[i℄ + S[j℄ Out0 0 0 0 0 /1 1 1 1 0 00 1 0 1 1 11 0 1 0 1 10 0 0 0 0 01 1 1 1 0 0... ... ... ... ... ...Fig. 3. The rounds of RC4�, ap-plied to a 2-
onserving permutation
1st word 1 � � � 1 1 12nd word n � � � 3 2 13th word n � � � 3 2 1...̀ th word n � � � 3 2 1Fig. 4. The stage in whi
h ea
h oneof the bits is exposed during the re-lated key atta
kRe
all that at ea
h step of the PRGA, S 
hanges in at most two lo
ations, andthus we 
an expe
t the pre�x of the output stream generated by RC4 from somepermutation S0, to be highly 
orrelated with the stream generated from the sameS0 (or a slightly modi�ed one) by RC4�. In parti
ular the stream generated byRC4 from an almost b-
onserving permutation is expe
ted to be highly 
orrelatedwith the 
onstant substream fxtg from Claim 1. This 
orrelation is demonstratedin Figure 8, where the fun
tion h �! Pr[1 � 8t � h Zt � xt mod 2q℄ (for spe
ial2q-exa
t keys) is empiri
ally estimated for n = 8, ` = 16 and di�erent q's. Forexample, a spe
ial 2-exa
t key 
ompletely determines 20 output bits (the lsb'sof the �rst 20 outputs) with probability 2�4:2 instead of 2�20, and a spe
ial16-exa
t key 
ompletely determines 40 output bits (4 lsb's from ea
h of the �rst10 outputs) with probability 2�2:3, instead of 2�40.We have thus demonstrated a strong probabilisti
 
orrelation between somebits of the se
ret key and some bits of the output stream for a large 
lass of weakkeys. In the next se
tion we des
ribe how to use this 
orrelation to 
ryptanalyzeRC4.5 Cryptanalyti
 Appli
ations of the Invarian
e Weakness5.1 Distinguishing RC4 Streams from RandomnessIn [MS01℄ Mantin and Shamir des
ribed a signi�
ant statisti
al bias in the se
-ond output word of RC4. They used this bias to 
onstru
t an eÆ
ient algorithmwhi
h distinguishes between RC4 outputs and truly random sequen
es by ana-lyzing only one word from O(N) di�erent outputs streams. This is an extremely



eÆ
ient distinguisher, but it 
an be easily avoided by dis
arding the �rst twowords from ea
h output stream. If these two words are dis
arded, the best knowndistinguisher requires about 230 output words (see [FM00℄). Our new observationyields a signi�
antly better distinguisher for most of the typi
al key sizes. Thenew distinguisher is based on the fa
t that for a signi�
ant fra
tion of keys, asigni�
ant number of initial output words 
ontain an easily re
ognizable pattern.This bias is 
attened when the keys are 
hosen from a uniform distribution, butit does not 
ompletely disappear and 
an be used to 
onstru
t an eÆ
ient dis-tinguisher even when the �rst two words of ea
h output sequen
e are dis
arded.Noti
e that the probability of a spe
ial 2q-exa
t key to be transformed into a2q-
onserving permutation, does not depend of the key length ` (see Theorem 2).However, the number of predetermined bits is linear in `, and 
onsequently thesize of this bias (and thus the number of required outputs) also depends on `. InFigure 5 we spe
ify the quantity of data required for a reliable distinguisher, fordi�erent key sizes. In parti
ular, for 64 bit keys the new distinguisher requiresonly 221 data instead of the previously best number of 230 output words.It is important to noti
e that the spe
i�ed output patterns extend over severaldozen output words, and thus the quality of the distinguisher is almost una�e
tedby dis
arding the �rst few words. For example, dis
arding the �rst two words
auses the data required for the distinguisher to grow by a fa
tor of between 20:5and 22 (depending on `). Another important observation is that the biases in thelsb's distribution 
an be 
ombined in a natural way with the biased distributionof the lsb's of English texts into an eÆ
ient distinguisher of RC4 streams fromrandomness in a 
iphertext-only atta
k in whi
h the atta
ker does not know thea
tual English plaintext whi
h was en
rypted by RC4. This type of distinguishersis dis
ussed in Appendix B.5.2 RC4 has Low Sampling Resistan
eBiryukov, Shamir and Wagner de�ned in [BSW00℄ a new se
urity measure ofstream 
iphers, whi
h they denoted as their Sampling Resistan
e. The strong
orrelation between 
lasses of RC4 keys and 
orresponding output patterns 
anbe used to prove that RC4 has relatively low sampling resistan
e, whi
h improvesthe eÆ
ien
y of time/memory/data tradeo� atta
ks. Further details 
an be foundin Appendix C.6 RC4 Key Setup and the First Word OutputIn this se
tion, we 
onsider related key atta
ks where the atta
ker has a

ess tothe values of all the bits of 
ertain words of the key. In parti
ular, we 
onsider the
ase where the key presented to the KSA is made up of a se
ret key 
on
atenatedwith an atta
ker visible value (whi
h we will refer to as an Initialization Ve
toror IV ). We will show that if the same se
ret key is used with numerous di�erentinitialization ve
tors, and the atta
ker 
an obtain the �rst word of RC4 output
orresponding to ea
h initialization ve
tor, he 
an re
onstru
t the se
ret key with



minimal e�ort. How often he 
an do this, the amount of e�ort and the numberof initialization ve
tors required depends on the order of the 
on
atenation, thesize of the IV, and sometimes on the value of the se
ret key. This observation isespe
ially interesting, as this mode of operation is used by several 
ommer
iallydeployed en
ryption systems ([Rei01℄, [LMSon℄) and the �rst word of plaintextsis often an easily guessed 
onstant su
h as the date, the sender's identity, et
, andthus the atta
k is pra
ti
al even in a 
iphertext-only mode of atta
k. However,the weakness does not extend to the Se
ure So
ket Layer proto
ol that browsersuse.In terms of keystream output, this atta
k is interested only in the �rst wordof output from any given se
ret key and IV. Hen
e, we 
an simplify our modelof the output. The �rst output word depends only on three spe
i�
 permutationelements, as shown in the �gure below showing the state of the permutationimmediately after KSA. When those three words are as shown, the value labeledZ will be output as the �rst word.1 X X + YX Y ZIn addition, if the key setup rea
hes a stage where i is greater than or equalto 1, X = Si[1℄ and X + Y = Si[1℄ + Si[Si[1℄℄, then (if we model the remainingswaps in the key setup as random) with probability greater than e�3 � 0:05,none of the elements referen
ed by these three values will parti
ipate in anyfurther swaps, and in that 
ase, the value S[S[1℄ +S[S[1℄℄℄ will be output as the�rst word. With probability less than 1 � e�3 � 0:95, at least one of the threevalues will parti
ipate in a swap, and be set to an e�e
tively random value, whi
hwill make the output value e�e
tively random. We will refer to this situation asthe resolved 
ondition. Our atta
k involves examining messages with spe
i�
 IVvalues su
h that, at some point, the KSA is in a resolved 
ondition, and wherethe value of S[S[1℄ + S[S[1℄℄℄ gives us information on the se
ret key. Then, weobserve suÆ
iently many IV values that the a
tual value of S[S[1℄ + S[S[1℄℄℄o

urs dete
tably often.7 Details of the Known IV Atta
k7.1 IV Pre
edes the Se
ret KeyFirst 
onsider the 
ase where the IV is prepended to the se
ret key. In this 
ir
um-stan
e, assuming we have an I word IV, and a se
ret key (K[0℄;K[1℄; : : :K[`�1℄),we attempt to derive information on a parti
ular word B of the se
ret key (K[B℄)by sear
hing for IV values su
h that, after the �rst I steps, SI [1℄ < I andSI [1℄ + SI [SI [1℄℄ = I +B. Then, with high likelihood (probability � e� 2BN if wemodel the intermediate swaps as random), we will be in a resolved 
onditionafter step I + B, and then the most probable output value will beOut = SI+B�1[jI+B ℄ = SI+B�1[jI+B�1 +K[B℄ + SI+B�1[I +B℄℄



Or, in other words, if we know the value of jI+B�1 and SI+B�1, then given the�rst word output Out, we 
an predi
t the valueK[B℄ = S�1I+B�1[Out℄� jI+B�1 � SI+B�1[I + B℄where S�1t [X ℄ denotes the lo
ation within the permutation St where the valueX appears. This predi
tion is a

urate more than 5% of the time, and e�e
tivelyrandom less than 95% of the time. By 
olle
ting suÆ
iently many values fromdi�erent IVs, we 
an re
onstru
t K[B℄.In the simplest s
enario (3 word 
hosen IVs), the atta
k works as follows4:suppose that we know the �rst A words of the se
ret key (K[3℄; : : : ;K[A + 2℄,with A = 0 initially), and we want to know the next word K[A+ 3℄. We exam-ine a series of IVs of the form (A + 3; N � 1; X) for approximately 60 di�erentvalues for X . At the �rst step, j is advan
ed by A + 3, and then S[i℄ and S[j℄are swapped, resulting in the key setup state whi
h is shown s
hemati
ly below,where the top array is the 
ombined IV and se
ret key presented to the KSA,and the bottom array is a portion of the permutation, and where the positionsof the i, j variables are indi
ated.A+ 3 N � 1 X K[3℄ K[A+ 3℄0 1 2 A+ 3A+ 3 1 2 0i0 j0Then, on the next step, i is advan
ed, and then the advan
e on j is 
omputed,whi
h happens to be 0. Then, S[i℄ and S[j℄ are swapped, resulting in the belowstru
ture:A+ 3 N � 1 X K[3℄ K[A+ 3℄0 1 2 A+ 3A+ 3 0 2 1i1 j1Then, on the next step, j is advan
ed by X + 2, whi
h implies that ea
h dis-tin
t IV assigns a di�erent value to j, and thus beyond this point, ea
h IV a
tsdi�erently, approximating the randomness assumption made above. Sin
e theatta
ker knows the value of X and K[3℄; : : :K[A+2℄, he 
an 
ompute the exa
tbehavior of the key setup until he rea
hes step A + 3. At this point, he knowsthe value of jA+2 and the exa
t values of the permutation SA+2. If the value atSA+2[0℄ or SA+2[1℄ has been disturbed, the atta
ker dis
ards this IV. Otherwise,j is advan
ed by SA+2[i℄ +K[A+3℄, and then the swap is done, resulting in thebelow stru
ture:A+ 3 N � 1 X K[3℄ K[A+ 3℄0 1 2 A+ 3A+ 3 0 S[2℄ S[j℄iA+34 This s
enario was �rst published by Wagner in [Wag95℄



The atta
ker knows the permutation SA+2 and the value of jA+2. In addition, ifhe knows the value of SA+3[A+ 3℄, he knows its lo
ation in SA+2, whi
h is thevalue of jA+3, and hen
e he would be able to 
ompute K[A+ 3℄. We also notethat iA+3 has now swept past 1, SA+3[1℄ and SA+3[1℄+SA+3[SA+3[1℄℄, and thusthe resolved 
ondition exists, and hen
e with probability p > 0:05, by examiningthe value of the �rst word of RC4 output with this IV, the atta
ker will obtainthe 
orre
t value of K[A+ 3℄. Hen
e, by examining approximately 60 IVs withthe above 
on�guration, the atta
ker 
an rederive K[A℄ with a probability ofsu

ess greater than 0.5.By iterating the above pro
ess a
ross the se
ret key, the atta
ker 
an rederive` words of se
ret key using 60` 
hosen 3 word IVs.The next thing to note is that the atta
k works for IVs other than those inthe spe
i�
 (A + 3; N � 1; X) form. Any I word IV that, after I steps, leavesSI [1℄ < I and SI [1℄ + SI [SI [1℄℄ = I + B will suÆ
e for the above atta
k. Inaddition, sin
e the atta
ker is able to simulate the �rst I steps of the key setup,he is able to determine whi
h IVs have this property. By examining all IVs thathave this property, we 
an extend this into a known IV atta
k, without usingan ex
essive number of IVs. The probabilities to �nd the next word, and theexpe
ted number of IVs needed to obtain 60 IVs of the proper form, are givenin Figure 6 at the end of this paper.7.2 IV Follows the Se
ret KeyIn the 
ase that the IV is appended to the se
ret key, we need to take a di�erentapproa
h. The previous analysis atta
ked individual key words. When the IVfollows the se
ret key, what we do instead is sele
t IVs that give us the state ofthe permutation at an early phase of the key setup, su
h as immediately afterthe se
ret key has been used for the �rst time. Given that only a few swapshave o

urred up to that point, it is reasonably straight-forward to re
onstru
tthose swaps from the permutation state, and hen
e obtain the se
ret key (seeAppendix D for one su
h method).To illustrate the atta
k in the simplest 
ase, suppose we have an A wordse
ret key, and a 2 word IV. Further suppose that the se
ret key was weak inthe sense that, immediately after A steps of KSA, SA[1℄ = X , X < A, andX + SA[X ℄ = A. This is a low probability event (p � 0:00062 if A = 13),but it depends only on the se
ret key. For su
h a weak se
ret key, the atta
ker
an assume the value of jA�1 + SA�1[A℄, and then examine IVs with a �rstword of W = Y � (jA�1 + SA�1[A℄). With su
h IVs, the value of jA will be thepresele
ted value Y . Then, S[A℄ and S[Y ℄ are swapped, and so SA[A℄ = AA�1[Y ℄.Here, assuming Y was neither 1 nor SA[1℄, then the resolved 
ondition has beenestablished, and with probability > 0:05, SA�1[Y ℄ will be the �rst word output.Then, by examining su
h IVs with the se
ond word being at least 60 di�erentvalues, we 
an observe the output a number of times and derive the value ofSA[Y ℄ with good probability. By sele
ting all possible values of Y, we 
an dire
tlyobserve the state of the SA permutation, from whi
h we 
an rederive the se
retkey. We will denote this result as key re
overy.



If X+SA[X ℄ = A+1, a similar analysis would appear to apply. By assumingSA[A℄, SA[A + 1℄ and jA, we 
an swap SA+1[Y ℄ into SA+2[A + 1℄ for N � 2distin
t IVs for any parti
ular Y . However, the value of jA+2 is always the samefor any parti
ular Y , and so the probabilities that a parti
ular IV outputs thevalue S[Y ℄ is not independently distributed. This e�e
t 
auses the reading of thepermutation state to be 'noisy', that is, for some values of Y , we see S[Y ℄ asthe �rst word far more often than our analysis expe
ted, and for other values ofY , we see it far less often. Be
ause of this, some of the entries SA+1[Y ℄ 
annotbe reliably re
overed. Simulations assuming a 13 word se
ret key and n = 8have shown that an average of 171 words of the SA permutation state 
an besu

essfully re
onstru
ted, in
luding an average of 8 words of (SA[0℄; : : : ; SA[12℄),whi
h immediately give you e�e
tively 8 key words. With this information, thekey is redu
ed enough that it 
an be brute for
ed. We will denote this result askey redu
tion.If we have a 3 word IV, then there are more types of weak se
ret keys. Forexample, 
onsider a se
ret key where SA[1℄ = 1 and SA[A℄ = A. Then, by as-suming jA, we 
an examine IV where the �rst word has a value W so that thenew value of jA+1 is 1, and so SA[1℄ and SA[A℄ are swapped, leaving the stateafter A+ 1 steps to be:K[0℄ K[1℄ K[A� 1℄ W X Z0 1 A� 1 A A+ 1 A+ 2SA[0℄ A SA[A� 1℄ 1 SA[A+ 1℄ SA[A+ 2℄jA+1 iA+1Then, by assuming SA[A + 1℄ (whi
h with high probability is A + 1, andwill always be at most A + 1), we 
an examine IVs with the se
ond word X =Y � (1 + SA[A + 1℄), for an arbitrary Y , whi
h will swap the value of SA[Y ℄into SA+1[A + 1℄. Assuming Y isn't either 1 or A, then the resolved 
onditionhave been set up, and using a number of values for the third IV word Z, we 
andedu
e the value of SA+1[Y ℄ for an arbitrary Y , giving us the permutation afterA steps.There are a number of other types of weak keys that the atta
ker 
an takeadvantage of, summarized in Figure 7 found at the end of this paper.The last weak se
ret key listed in Figure 7 is espe
ially interesting, in thatthe te
hnique that exposes the weakness is rather di�erent than that of the otherweak se
ret keys listed. Immediately after A steps, the state is:K[0℄ K[1℄ K[X ℄ W Z0 1 X A A+ 1SA[0℄ X SA[X ℄ Z SA[A+ 1℄iAThe initial IV word 
auses SA[X ℄ and SA[A℄ to be swapped, leaving the stateas:



K[0℄ K[1℄ K[X ℄ W Z0 1 X A A+ 1SA[0℄ X Z SA[X ℄ SA[A+ 1℄iANow, to inquire about the value of SX+Z [Y +Const℄, we examine numerousIVs with se
ond and third words that all set the value of jA+3 to be Y . The KSAwill 
ontinue for X + Z � (A + 3) more steps until i now points to the elementSX+Z [X + Z℄. At this point, sin
e we haven't gone through a great number ofsteps sin
e we knew the value of j (sin
e X+Z�(A+3)� A�4), then with highprobability, jX+Z+1 = Y +Const, where Const is a 
onstant term that dependsonly on the state of the permutation SA+1. If this is true, then SX+Z+1[X+Z℄ =SX+Z [Y + 
onst℄, and if the elements S[1℄ and S[X ℄ have not been disturbed(again, this happens with high probability), the resolved 
ondition has beena
hieved, and the �rst output word will be biased towards SX+Z [Y + 
onst℄.In addition, be
ause the value of 
onst will be the same independent of Y , itsvalue 
an easily be determined, thus allowing the atta
ker to observe many ofthe values of SX+Z . This 
lass of weak keys requires far more known IVs toexploit, but also o

urs relatively frequently.If we have a 4 word5 IV, then the same general approa
h as the previousanalysis 
an be used to re
over virtually all se
ret keys, given suÆ
ient IVs. First,we assume jA�1, SA�1[A℄, SA�1[A+1℄, SA�1[A+2℄, SA�1[A+3℄ 6. Then, basedon this assumption, we sear
h for IVs that, after A+ 4 steps, sets SA+4[1℄ = Xand SA+4[X ℄ = Z for X;Z < A + 4; X + Z � A + 4, and we note the value ofjA+4 = Y . Then, we save the value of X +Z, the value Y and the value outputas the �rst word for that parti
ular IV. With nontrivial probability, the value ofthis word will be SX+Z [Y + 
onstX+Z ℄, where 
onstX+Z is a 
onstant term thatdepends on the se
ret key, and the value X+Z. Sin
e that value is independentof the IV, we 
an 
olle
t numerous possible values of SX+Z [Y + 
onstX+Z ℄ forvarious values of X + Z, and use that to �rst re
onstru
t 
onstX+Z , and thenre
onstru
t SX+Z .8 Related-Key Atta
ks on RC4In this se
tion, we dis
uss two related-key atta
ks based on weaknesses dis
ussedpreviously in this paper. They work within the following model: the atta
ker isgiven a bla
k box that has a randomly 
hosen RC4 key K inside it, an outputbutton and an input tape of jKj words. In ea
h step the atta
ker 
an either pressthe output button to get the next output word, or write � on the tape, whi
h
auses the bla
k-box to restart the output generation pro
ess with a new keyde�ned as K 0 = K � �. The purpose of the atta
ker is to �nd the key K (orsome information about it).5 This approa
h generalizes in the obvious way to longer IVs.6 Note that SA�1[x℄ � x for x � A. This limits the size of the sear
h required.



8.1 Related-Key Atta
k Based on the Invarian
e WeaknessThis atta
k works when the number of key words, is a power of two. It 
onsists ofn stages where in stage q the qth bit of every key word is exposed7. The predi
ateChe
kKey takes as input an RC4 bla
kbox and a parameter q (the stage number)and de
ides whether the key in the box is spe
ial 2q-exa
t. This purpose 
an bea
hieved by randomly sampling key bits that are irrelevant for the 2q-exa
tness ofthe key and estimating the expe
ted length of q-patterned output. For a spe
ial2q-exa
t key the expe
ted length will be signi�
antly longer than in a randomoutput (where it is less than 2) and thus Che
kKey works in time O(1). Thepro
edure Expand takes as input an RC4 bla
kbox and a parameter q (the stagenumber), assumes that the key in the box is spe
ial 2q�1-exa
t, and makes itspe
ial 2q-exa
t. The method for doing so is by enumerating all the possibilitiesfor the qth bits (2`�1 su
h possibilities) and invoking Che
kKey to de
ide whenthe key in the box is spe
ial 2q-exa
t. Expand works in a slightly di�erent wayfor q = 1 and q = n. For q = 1, ex
ept for the lsb's, it determines the 
ompleteK[0℄ (by for
ing it to 1) and msb(K[1℄). For q = n, there is only one 2n-exa
tkey and 
onsequently we 
an 
al
ulate the output produ
ed from this key andrepla
e Che
kKey by simple 
omparison. The time 
omplexity of this stage isO(2n+`) for q = 1 and O(2`�1) for any other q.The total time required for the atta
k is thus O(2n+`) + (n � 1)O(2`) =O(2n+`). For typi
al RC4n=8 key with 32 bytes, the 
omplexity of exhaustivesear
h is 
ompletely impra
ti
al (2256), whereas the 
omplexity of the new atta
kis only O(2n+`) = O(240).8.2 Related-Key Atta
k Based on Known IV WeaknessIn this se
tion we use the known IV weaknesses to develop an eÆ
ient relatedkey atta
k on RC4.The atta
k 
onsists of 3 stages, where in the �rst two stages we gain informa-tion on the �rst three words of the se
ret key, and in the third stage we iteratedown the key, and expose ea
h word of the key su

essively. The stages of theatta
k are as follows:Step 1 This step attempts to �nd values of K[0℄, K[1℄ su
h that S1[1℄ = 1,and reveal the value of K[2℄. The pro
edure is to sele
t random values of(X;Y ), and for ea
h su
h random value, write onto the tape 240 ve
torswith the initial four words (X;Y; Z;W ) for Z 2 f0; N=4; N=2; 3N=4g andwith 60 distin
t random values of W , and for ea
h su
h ve
tor, press theoutput button. If X and Y are su
h that S1[1℄ = 1 (for the modi�ed key),then the output of the �rst word will be biased towards 3+(K[2℄�Z), unlessthat value happens to be 1. Hen
e, for at least 3 of the sele
ted values ofZ, the �rst word outputs will be biased towards one of 
onst, 
onst+N=4,
onst + N=2, 
onst + 3N=4. This is dete
table, and also by examining thevalue of 
onst, the atta
ker 
an re
onstru
t the value of K[2℄. We expe
t totry N random values of (X;Y ) before �nding a pair that is appropriate.7 In fa
t, K[1℄ is fully revealed during the �rst stage (see Figure 4)



Step 2 This step attempts to �nd the values of K[0℄, K[1℄. The pro
edure is towrite on the tape 60 ve
tors with the initial four words (X;Y; Z;W ), whereX , Y are the values re
overed in the previous step, Z = (N � 3) � K[2℄,and with 60 distin
t random values of W , and for ea
h su
h ve
tor, pressthe output button. This parti
ular initial sequen
e assures that S2[1℄ = 1and S2[2℄ = S1[0℄ = K[0℄, and hen
e the output will be biased towards K[0℄.On
e that has been re
overed, K[1℄ 
an be 
omputed.Step 3 This step iteratively re
overs individual words of the key. It operatesby running a subpro
edure that assumes that we have already re
overed(K[0℄; : : : ;K[A� 1℄), and want to learn the value of K[A℄. The pro
edure isto write 60 ve
tors that have the property that, given the known values of(K[0℄; : : : ;K[A � 1℄), that SA�1[1℄ = X < A and X + SA�1[X ℄ = A. With60 su
h ve
tors, we 
an use the pro
edure shown in 7.1 to rederive K[A℄.The total time required for the atta
k is thus (be
ause 2n � `):Step1 + Step2 + (`� 3) � Step3 = O(2n+8) + 26 + (`� 3)26 = O(2n+8)For a RC4 key with n = 8 the time 
omplexity is O(216) and is essentiallyindependent of the key length.8.3 Comparing the Atta
ksBoth atta
ks are able to 
ompletely re
onstru
t the randomly 
hosen RC4 key8with a number of 
hosen keys and amount of work that is signi�
antly belowthat of brute for
e (ex
ept for extremely short RC4 keys). The �rst atta
k s
alesupwards as the key grows longer, while the time 
omplexity of the se
ond atta
kis independent of key length, with a 
ross-over point at ` = 8.However, due to the se
ond word weakness, future implementations of RC4are likely to dis
ard some pre�x of the output stream, and in this 
ase the se
ondatta
k be
omes diÆ
ult to apply { output word x depends on 2x+1 permutationelements immediately after KSA, and all the 2x+1 elements must o

ur beforet for the resolved 
ondition to hold. On the other hand, the �rst atta
k extendswell, in that the probability of the output words being patterned drops modestlyas the number of dis
arded words in
reases.9 Dis
ussionSe
tion 3 des
ribes an interesting weakness of RC4 whi
h results from the sim-pli
ity of its key s
heduling algorithm.We re
ommend to neutralize this weaknessby dis
arding the �rst N words of ea
h generated stream. After N rounds, everyelement of S is swapped at least on
e and the permutation S and the index jare expe
ted to be "independent" of the initialization pro
ess.Se
tion 6 des
ribes a weakness of RC4 in a 
ommon mode of operation inwhi
h atta
ker visible IV's are 
on
atenated with a �xed se
ret key. It is easy8 the �rst atta
k works only for some key lengths.



to extend the atta
k to other simple types of 
ombination operators (e.g., whenwe XOR the IV and the �xed key) with essentially the same 
omplexity. Were
ommend to neutralize this weakness by avoiding this mode of operation, orby using a se
ure hash to form the key presented to the KSA from the IV andse
ret key.A Applying The Atta
k to WEP-like CryptosystemsThe Wired Equivalent Priva
y (WEP) proto
ol is designed to provide priva
yto pa
ket based wireless networks based on the 802.11 standard (see [LMSon℄).It en
rypts by taking a se
ret key and a per-pa
ket 3 byte IV, and using theIV followed by the se
ret key as the RC4 key. Then, it transmits the IV, andthe RC4 en
rypted payload. By using the results from Se
tion 7.1, we 
an showhow, by examining enough 
iphertext pa
kets, to re
onstru
t the se
ret key fora WEP-like 
ryptosystem. Note that we have not attempted to atta
k an a
tualWEP 
onne
tion, and hen
e do not 
laim that WEP is a
tually vulnerable tothis atta
k.We assume that the atta
ker is able to retrieve the �rst byte of the RC4output from ea
h pa
ket9. By the analysis done in se
tion 7.1, to re
over keybyte B, the atta
ker needs to know the previous key bytes, and then sear
h forIVs that sets up the permutation su
h thatX = SB+3[1℄ < B + 3 (1)X + SB+3[X ℄ = B + 3With 60 su
h IVs, the atta
ker 
an rederive the key byte with reasonableprobability of su

ess. The number of pa
kets required to obtain that numberof IVs depends on the exa
t IVs that the sender uses. Although the 802.11standard does not spe
ify how an implementation should generate these IVs,
ommon pra
ti
e is to use a 
ounter to generate them.A.1 Analysis of IVs Generated by a Little Endian CounterIf the IVs are generated by a multibyte 
ounter in little endian order (and hen
ethe �rst byte of the IV in
rements the fastest), then the atta
ker 
an sear
h forIVs of the form (B; 255; N) for 3 � B < 8. If he 
an 
olle
t these for 60 di�erentvalues of N, then he 
an derive the se
ret key with little work. This requiresapproximately 4,000,000 pa
kets.9 Be
ause of the payload format used with 802.11, the atta
ker typi
ally does knowthe �rst byte of ea
h plaintext payload, and hen
e is able to derive the �rst byte ofRC4 output.



A.2 Analysis of IVs Generated by a Big Endian CounterIf the IVs are generated by a multibyte 
ounter in big endian order (and hen
ethe last byte of the IV in
rements the fastest), then the atta
ker 
an, as above,sear
h for IVs of the form (B; 255; N). This requires approximately 1,000,000pa
kets to 
olle
t the requisite IVs, assuming that the 
ounter starts from zero.However, if the 
ounter doesn't start from zero, the atta
ker has an alter-native strategy available to him. He 
an assume the �rst several bytes of se
retkey, and then sear
h for IVs that set up the permutation as in Equation 1. Ifthe atta
ker assumes the �rst two bytes of se
ret key, then for ea
h initial IVbyte, there are approximately 4 settings of the remaining two bytes that setup the permutation as required to rederive a parti
ular key byte. Hen
e, withapproximately 1,000,000 pa
kets, and an additional 216 work fa
tor, he 
an stillrederive the key.It is 
ommon pra
ti
e in the industry to extend the length of the WEPse
ret key (whi
h is spe
i�ed as 40 bit). Be
ause the above atta
ks re
over ea
hkey byte individually, the 
omplexity of the atta
k grows linearly rather thanexponentially with the key length, and thus even an extremely long key is notimmune to this atta
k.B Ciphertext-Only Distinguishers based on theInvarian
e WeaknessThe distinguishers we presented in Se
tion 5.1, as well as most of the distin-guishers mentioned in the literature (for RC4 and other stream 
iphers) assumeknowledge of the plaintext in order to isolate the XORed key stream.However, in pra
ti
e the only information the atta
ker has is typi
ally somestatisti
al knowledge about the plaintext, e.g., that it 
ontains English text.Combining the non-random behaviors of the plaintext and the key-stream is notalways possible, and there are 
ases where XORing biased streams result witha totally random stream, e.g. when one stream is biased in its even positionsand the other stream is biased in its odd positions. We prove here that if theplaintexts are English texts, it is easy to 
onstru
t a 
iphertext-only distinguisherfrom our biases. The intuition of this 
onstru
tion is that the biases des
ribedin Se
tion 5.1 are in the distribution of the lsb's, and 
onsequently they 
an be
ombined with the non-random distribution of the lsb's of English texts.There are many major biases in the distribution of the lsb's of English texts,and they 
an be 
ombined with biases of the key-stream words in various ways.In Theorem 3, we show how to 
ombine the distribution of the �rst lsb of theRC4 output stream, with the �rst order statisti
s of English texts10 :Theorem 3 Let C be the 
iphertext generated by RC4 from a random key andthe ASCII representation of plaintexts, distributed a

ording to the �rst order10 Sin
e the purpose of the theorem is only to demonstrate this approa
h , we ignorethe fa
t that the distribution of the �rst 
hara
ters in an English senten
e di�ersfrom the distribution of mid-text 
hara
ters.



statisti
s of English texts. Let p be the probability of a random key to be spe
ial2-exa
t. Then C 
an be distinguished from a random stream by analyzing about200p2 output words.For example, for RC4n=8 with 8 byte keys, p = 2�16, whi
h implies a reliable
iphertext-only distinguisher that works with less than 240 data. The proof ofTheorem 3 is based on the observation that the lsb of a random English text
hara
ter is zero with probability of about 55%. The formal proof is omitted dueto spa
e limitations.It is important to note that Theorem 3 does not use all the statisti
al infor-mation whi
h is available in either the key-stream or the plaintext distributions,and 
onsequently does not represent the best possible atta
k.C The Sampling Resistan
e of RC4Most of the Time/Memory/Data tradeo� atta
ks on stream 
iphers are basedon the following paradigm. The atta
ker keeps a database of [state,output℄ pairs(sorted by output) and lookups every subsequen
e of the output stream in thisdatabase. When a (suÆ
iently long) database sequen
e is lo
ated in the output,the atta
ker 
an 
on
lude that the a
tual state is the one stored along with thissequen
e and predi
t the rest of the stream.A drawba
k of this approa
h is that the large database must be stored in ahard disk(s) whose random a

ess time is about a million times slower than a
omputational step. To improve that atta
k we 
an keep on disk only states thatare guaranteed to produ
e outputs with some rare but easy re
ognizable property(e.g., starting with some pre�x �). In this 
ase only output sequen
es that havethis property have to be sear
hed in the database, and thus the expe
ted timeand the expe
ted number of disk probes is signi�
antly redu
ed.In general, produ
ing a pair [state,output℄ with su
h a rare property 
ostsmu
h more than produ
ing a random pair. O( 1p ) random states are required to�nd a single pair, where p is the probability of a random output to have this prop-erty. However, if we 
an eÆ
iently enumerate states that produ
e su
h outputs,the number of sampled states de
reases dramati
ally, and this method 
an beapplied without signi�
ant additional 
ost during the prepro
essing stage. Thesampling resistan
e of a stream 
ipher provides a lower bound on the eÆ
ien
yof su
h enumeration.Su
h an atta
k 
an be applied to RC4 in two ways, based on the KSA andPRGA parts. An atta
k on the generation part 
onstru
ts a database of pairs[RC4 state, output substring℄ and analyzes all the substrings along a single out-put stream. The database 
onstru
tion is very simple sin
e it is easy to enumeratestates whi
h produ
e outputs that have some 
onstant pre�x. However, this enu-meration seems to be useless due to the huge e�e
tive key of this part (1684 bits)whi
h makes su
h a tradeo� atta
k 
ompletely impra
ti
al. A more promisingapproa
h is based on the KSA part whi
h uses a key of 40-256 bits and might bevulnerable to tradeo� atta
ks. In this 
ase, the pairs in the database are [se
ret



key, pre�x of the output stream℄, and the atta
k requires pre�xes from a largenumber of streams (instead of a single long stream).The 
orrelation des
ribed in Se
tion 4 provides an eÆ
ient sampling of keysthat are more likely to produ
e output pre�xes of the patterned type spe
i�edabove (
onstant (mod b)).For example, 
onsider the problem of sampling M keys whi
h are trans-formed by the KSA into streams whose �rst �ve words are �xed (mod 16). Thisproperty of random streams has probability of 2�20, and the expe
ted numberof disk probes during the a
tual atta
k is redu
ed by this fa
tor. For stream
iphers with high sampling resistan
e, su
h a �lter would in
rease the prepro-
essing time by a fa
tor of one million, as one would have to sample a millionrandom keys in order to �nd a single \good" key. For RC4 (due to the invarian
eweakness), the prepro
essing time in
reases by a fa
tor of less than four, as morethan one quarter of the exa
t spe
ial keys produ
e su
h streams. Consequently,the prepro
essing stage is a

elerated by a fa
tor of 218.To summarize this se
tion, we proved that RC4 has relatively low SamplingResistan
e, whi
h greatly improves the eÆ
ien
y of tradeo� atta
ks based on itsKSA.D Deriving the Se
ret Key from an Early PermutationStateGiven the values SA[0℄; : : : ; SA[A�1℄, one method to �nd all values ofK[0℄; : : : ;K[A�1℄ that result in su
h a permutation is:i = 0S = f0; : : : ; N � 1gFor i = 0 : : : A� 1X = S�1[SA[i℄℄If i < X < ABran
h over all values of 0 � X < A s.t. X � I orS[X ℄ 6= SA[X ℄, running the remaining part of thisalgorithm for all su
h values.K[i℄ = X � j � S[i℄j = XSwap(S[i℄, S[j℄)Verify that fS[0℄; : : : ; S[A� 1℄g = fSA[0℄; : : : ; SA[A� 1℄gThe number of times this algorithm will perform an iteration is bounded byA�+1, where � if the number of values 0 � x < A where SA[x℄ < A. Be
ause �is typi
ally quite small, this algorithm is typi
ally eÆ
ient.An algorithm with a better lower bound on run time 
ould be given by usingthe values of SA[A℄; : : : ; SA[N � 1℄.
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` q b k1a k2b p
 PRNDd PRC4e Data4 1 2 12 15 2�3 2�15 2 � 2�15 2156 1 2 14 18 2�4 2�18 2 � 2�18 2188 1 2 16 21 2�5 2�21 2 � 2�21 22110 1 2 18 24 2�6 2�24 2 � 2�24 22412 1 2 20 27 2�7 2�27 2 � 2�27 22714 1 2 22 30 2�8 2�30 2 � 2�30 23016 1 2 24 34 2�10 2�34 2 � 2�34 234Fig. 5. Data required for a reliable distinguisher, for di�erent key sizesa number of predetermined bits (q(`� 1) + n + 1)b number of determined output bits
 probability of these k1 key bits to determine these k2 output bits (taken from Figure 8)d = 2�k2e � PRND + 2�k1p
IV Length Probability Expe
ted IVs required3 4:57 � 10�5 13100004 4:50 � 10�5 13300005 1:65 � 10�4 3640006 1:64 � 10�4 3660007 2:81 � 10�4 2130008 2:80 � 10�4 2140009 3:96 � 10�4 15200010 3:94 � 10�4 15200011 5:08 � 10�4 11800012 5:04 � 10�4 11900013 6:16 � 10�4 9750014 6:12 � 10�4 9810015 7:21 � 10�4 8320016 7:18 � 10�4 83600Fig. 6. For various prepended IV and known se
ret key pre�x lengths, the probabilitythat a random IV will give us information on the next se
ret key word, and the expe
tednumber of IVs required to derive the next se
ret key word.



IV SettingsCondition First Se
ond Third Probability ResultSA[1℄ = 1 Swap with 1 Swap with Y Cy
le 0.0037 Key re
overySA[A℄ = ASA[1℄ = 2 Swap with 1 Cy
le Swap with Y 0.0070 Key redu
tionSA[A+ 1℄ = A+ 1SA[1℄ = X < A Swap with Y Cy
le Cy
le 0.0007 Key re
overySA[X℄ +X = ASA[1℄ = X < A Cy
le Swap with Y Cy
le 0.0009 Key re
overySA[X℄ +X = A+ 1SA[1℄ = X < A Cy
le Cy
le Swap with Y 0.0007 Key redu
tionSA[X℄ +X = A+ 2SA[1℄ = A Swap with Swap with Y Cy
le 0.0037 Key re
overyS�1A [1℄SA[1℄ = A+ 1 Swap with Y Swap with Cy
le 0.0036 Key re
overyS�1A [N � 1℄SA[1℄ = A+ 2 Cy
le Swap with Y Swap with 0.0038 Key redu
tionS�1A [N � 1℄SA[1℄ = N � 2 Swap with Y Cy
le Swap with 1 0.0034 Key redu
tionSA[A+ 2℄ = A+ 2SA[1℄ = N � 1 Swap with Y Swap with 1 Cy
le 0.0036 Key re
overySA[A+ 1℄ = A+ 1SA[1℄ = X < A Swap with X Cy
le Cy
le 0.1007 Key redu
tionSA[A℄ = ZX + Z > A+ 2Fig. 7. Weak se
ret keys with 3 word post�x IVs. Listed are the 
onditions on the SApermutation that distinguish them, the IV properties that the atta
ker sear
hes for toreveal S[Y ℄, the probability that this 
lass of weak key will o

ur with n = 8 and a 16word se
ret key, and the result of the atta
k on the weak key.
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Fig. 8. This graph demonstrates the probabilities of spe
ial keys (2q-exa
t with K[0℄ =1, msb(K[1℄ = 1)) of RC4n=8;`=16 to produ
e streams with long patterned pre�xes


