
Database Final Exam Notes

SQL
1. create table employee2 (                                            -- fewer columns than table employe

      fname    varchar(15) not null,

      lname    varchar(15) not null,

      ssn         char(9)         not null,

      salary   decimal(10,2),

      super_ssn char(9),

      dno      int               not null,

primary key (ssn),

foreign key (super_ssn) references employee(ssn), 

foreign key (dno) references department(dnumber)

);

2. create table department2 (                  -- again, fewer columns than department

    dname       varchar(15)   not null,

    dnumber   int                   not null,

    mgr_ssn    char(9)           not null,

   primary key (dnumber),

   foreign key (mgr_ssn) references employee(ssn)

);

3. insert into employee2 values ('peter', 'dordal', '123456789', 29000.01, '012345678', 55);
4. delete from employee2 where fname='peter';
5. update employee2 set salary = 1.10 * salary where salary >= 50000;
6. select e.lname from employee2 e where e.dno = 5;
7a. select e.lname from employee2 e, department2 d where e.dno = d.dnumber and d.dname="maintenance";
7b. select e.lname from employee2 e join department2 d on e.dno = d.dnumber where d.dname="maintenance"; (same result as 7a)
8. select e.lname from employee2 e where e.salary in (select e.salary from employee2 e where e.dno = 5);
9. select e.dno, count(*) from employee e GROUP BY e.dno;
10. select e.dno, sum(e.salary) from employee e GROUP BY e.dno
11. Select sum(e.salary) from employee2 e, department2 d where d.dname='Research' and d.dnumber=e.dno;
12.  Select e.lname, e.salary, 1.035 * e.salary AS newsalary from employee2;

Functional Dependencies and Normalization
A functional dependency is a kind of semantic constraint. If X and Y are sets of attributes (column names) in a relation, a functional 
dependency X Y means that if two records have equal values for X attributes, then they also have equal values for Y. Like key⟶  
constraints, FD constraints are not based on specific sets of records. For example, in the US, we have {zipcode} {city}, but we no⟶  
longer have {zipcode} {areacode}. ⟶

Example 1: EMP_DEPT
    Ename, ⟨ Ssn, Bdate, Address, Dnumber, Dname, Dmgr_ssn⟩
Dependencies:
    Ssn ⟶  Ename, Bdate, Address, Dnumber
    Dnumber  Dname, Dmgr_ssn⟶

Example 2: EMP_PROJ
    ⟨Ssn, Pnumber, Hours, Ename, Pname, Plocation⟩
Dependencies:
    Ssn  Ename⟶
    Pnumber  Pname, Plocation⟶
    {Ssn, Pnumber}  Hours⟶
  

A superkey (or key superset) of a relation schema is a set of attributes S so that no two tuples of the relationship can have the same 
values on S. A key is thus a minimal superkey: it is a superkey with no extraneous attributes that can be removed. For example, {Ssn, 
Dno} is a superkey for EMPLOYEE, but Dno doesn't matter (and in fact contains little information); the key is {Ssn}. 

Relations can have multiple keys, in which case each is called a candidate key. For example, in table DEPARTMENT, both {dnumber} 
and {dname} are candidate keys. For arbitrary performance-related reasons we designated one of these the primary key; other candidate 
keys are known as secondary keys. 

A prime attribute is an attribute (ie column name) that belongs to some candidate key. A nonprime attribute is not part of any key. 

A dependency X A is ⟶ full if the dependency fails for every proper subset X' of X; the dependency is partial if not, ie if there is a 
proper subset X' of X such that X' A.⟶

Normal Forms and Normalization

First Normal Form

First Normal Form (1NF) means that a relation has no composite attributes or multivalued attributes. Note that dealing with the multi-
valued location attribute of DEPARTMENT meant that we had to create a new table LOCATIONS. Composite attributes were handled by 
making each of their components a separate attribute.

Second Normal Form 

Second Normal Form (2NF) means that, if K represents the set of attributes making up the primary key, every nonprimeattribute A (that 
is an attribute not a member of any key) is functionally dependent on K (ie K A), but that this fails for any proper subset of K (no⟶  
proper subset of K functionally determines A). Alternatively, 2NF means that for every nonprime attribute A, the dependency K A is⟶  
full.

In the EMP_PROJ relationship, the primary key K is {Ssn, Pnumber}. 2NF fails because {Ssn} Ename, and {Pnumber} Pname,⟶ ⟶  
{Pnumber} Plocation.⟶

Third Normal Form

Third Normal Form (3NF) means that the relation is in 2NF and also there is no dependency X A for nonprime attribute A and for⟶  



attribute set X that does not contain a candidate key (ie X is not a superkey). In other words, if X A holds for some nonprime A, then X⟶  
must be a superkey. (For comparison, 2NF says that if X A for nonprime A, then X cannot be a proper subset of any key, but X can still⟶  
overlap with a key or be disjoint from a key.)

2NF:  If K represents the set of attributes making up the primary key, every nonprime attribute A (that is an attribute not a member of any 
key) is functionally dependent on K (ie K A), but that this fails for any proper subset of K (no proper subset of K functionally⟶  
determines A). 

3NF: 2NF + there is no dependency X A for nonprime attribute A and for an attribute set X that ⟶ does not contain a key (ie X is not a 
superkey). 

Normalization
A dependency X A that violates 2NF or 3NF can be fixed by ⟶ factoring out: we remove column A from the original table, and create a 
new table X,A . For example, if the table ⟨ ⟩ ⟨K1, K2, A, B  has dependency K1,A B (violating 3NF) we create two new tables ⟩ ⟶ ⟨K1, K2, 
A  and ⟩ ⟨K1, A, B . If we were factoring out A B, we would create new tables ⟩ ⟶ ⟨K1, K2, A  and ⟩ ⟨A,B . Both the resultant tables are⟩  
projectionsof the original; in the second case, we also have to remove duplicates. Sometimes there are differences in the end result 
depending on which dependency we chose first for factoring out.

The relationship EMP_DEPT of EN fig 15.11 is not 3NF, because of the dependency dnumber  dname (or⟶  dnumber  dmgr_ssn). If⟶  
we factor by dependency dnumber  dname, dmgr_ssn⟶ , we get

ED1:     Ename, ⟨ Ssn, Bdate, Address, Dnumber ,⟩                 ED2:     ⟨Dnumber, Dname, Dmgr_ssn⟩

Boyce-Codd Normal Form
BCNF requires that whenever there is a nontrivial functional dependency X A, then X is a superkey. It differs from 3NF in that 3NF⟶  
requires either that X be a superkey or that A be prime (a member of some key). To put it another way, BCNF bans all nontrivial 
nonsuperkey dependencies X A; 3NF makes an exception if A is prime.⟶

As for 3NF, we can use factoring to put a set of tables into BCNF. However, there is now a serious problem: by factoring out a prime 
attribute A, we can destroy an existing key constraint! This is undesireable.

The canonical example of a relation in 3NF but not BCNF is ⟨A, B, C  where we also have C B. Factoring as above leads to ⟩ ⟶ ⟨A, C⟩ 
and ⟨C, B . We have lost the key A,B! However, this isn't quite all it appears, because from C B we can conclude A,C B, and thus⟩ ⟶ ⟶  
that A,C is also a key, and might be a better choice of key than A,B.

Generally, it is good practice to normalize to 3NF, but it is often not possible to achieve BCNF. Sometimes, in fact, 3NF is too inefficient, 
and we re-consolidate for the sake of efficiency two tables factored apart in the 3NF process.

File organizations
The simplest file is the heap file, in which records are stored in order of addition. Insertion is efficient; search takes linear time. Deletion 
is also slow, so that sometimes we just mark space for deletion.

Another format is to keep the records ordered (sorted) by some field, the ordering field. This is not necessarily a key; for example, we 
could keep file Employee ordered by Dno. If the ordering field is a key, we call it the ordering key. Ordered access is now fast, and 
search takes log(N) time (where N is the length of the file in blocks and we are counting only block accesses). 

Insertion and deletion are expensive. We can improve insertion by keeping some unused space at the end of each block for new records 
(or the moved-back other records of the block). We can improve deletion by leaving space at the end (or, sometimes, right in the middle). 
Another approach is to maintain a transaction file: a sequential file consisting of all additions and deletions. Periodically we update the 
master file with all the transactions, in one pass. 

Hashing as file organization
We have a hash function h that applies to the key values, h = hash(key). For disk files, we typically use full blocks as buckets. However, 
these will often be larger than needed. As a result, it pays to consider hash functions that do not generate too many different values; a 
common approach is to consider hash(key) mod N, for a smallish N (sometimes though not universally a prime number). 

Given a record, we will compute h = hash(key). We also provide a single-block map hash,block  of hash values to block addresses (in⟨ ⟩  
effect corresponding to hashtable[]). Note that in Fig 17.10, Bucket 1 and Bucket 2 share an overflow bucket; we also can manipulate the 
hash,block  structure so that two buckets share a block. When a single bucket approaches two blocks, it can be given its own overflow⟨ ⟩  

block.

 

Extendible Hashing

This technique manages buckets more efficiently. We hash on the first d bits of the hash values; d is called the global depth. We keep a 
directory of all 2d possible values for these d bits, each with a pointer to a bucket block. Sometimes, two neighboring buckets are 
consolidated in the directory; for example, if d=3, hash prefix values 010 and 011 might point to the same block. That block thus has a 
reduced local depth of 2. 

As we fill blocks, we need to create new ones. If a block with a reduced local depth overflows, we split it into two blocks with a greater 
depth (still ≤ d). If a block with local depth d overflows, we need to make some global changes: we increment d by 1, double the directory 
size, and double up all existing blocks except for the one causing the overflow. 

Ch 18: indexing
It is common for databases to provide indexes for files. An index can be on either a key field or a non-key field; in the latter case it is 
called a clustering index. The index can either be on a field by which the file is sorted or not. An index can have an entry for every 
record, in which case it is called dense; if not, it is called sparse. An index on a nonkey field is always considered sparse, since if every 
record had a unique value for the field then it would in fact be a key after all.

A file can have multiple indexes, but the file itself can be structured only for one index. We'll start with that case. The simplest file 



structuring for the purpose of indexing is simply to keep the file sorted on the attribute being indexed; this allows binary search. For a 
while, we will also keep restrict attention to single-level indexes.

A primary index is an index on the primary key of a sorted file (note that an index on the primary key, if the file is not maintained as 
sorted on that primary key, is thus not a "primary index"!). The index consists of an ordered list of pairs k,p , where k is the first key⟨ ⟩  
value to appear in the block pointed to by p (this first record of each block is sometimes called the anchor record). To find a value k in 
the file, we find consecutive k1,p  and k2,p+1  where k1≤k<k2; in that case, the record with key k must be on block p. This is an⟨ ⟩ ⟨ ⟩  
example of a sparse index. A primary index is usually much smaller than the file itself. 

Example 1 on EN6 p 635: 30,000 records, 10 per block, for 3000 blocks. Direct binary search takes 12 block accesses. The index entries 
are 9+6 bytes long, so 1024/15 = 68 fit per 1024-byte block. The index has 3000/68 = 45 blocks; binary search requires 6 block accesses, 
plus one more for the actual data block itself.

Clustering index

We can also imagine the file is ordered on a nonkey field (think Employee.dno). In this case we create a clustering index. The index 
structure is the same as before, except now the block pointer points to the first block that contains any records with that value. Clustering 
indexes are of necessity sparse. 

Secondary Indexes

Now suppose we want to create an index for Employee by (fname, lname), assumed for the moment to be a secondary key. The record 
file itself is ordered by Ssn. An index on a secondary key will necessarily be dense, as the file won't be ordered by the secondary key; we 
cannot use block anchors. A common arrangement is simply to have the index list key,block  pairs for every key value appearing; if there⟨ ⟩  
are N records in the file then there will be N in the index and the only savings is that the index records are smaller. If B is the number of 
blocks in the original file, and BI is the number of blocks in the index, then BI ≤B, but not by much, and log(BI)  log(B), the search≃  
time. But note that unindexed search is linear now, because the file is not ordered on the secondary key.

Example 2, EN6, p 640: 30,000 records, 10 per block. Without an index, searching takes 1500 blocks on average. Blocks in the index 
hold 68 records, as before, so the index needs 30,000/68 = 442 blocks; log2(442)  9. ≃

Secondary indexes can also be created on nonkey fields. One common option is for each index entry to point to blocks of record pointers.

Hashing in Indexes
Hashing can be used to create a form of index, even if we do not structure the file that way. We can use hashing with equality 
comparisons, but not order comparisons, which is to say hashing can help us find a record with ssn=123456789, but not records with 
salary between 40000 and 50000. 

ISAM Indexes
Perhaps our primary sorted index grows so large that we'd like an index for it. At that point we're creating a multi-level index. To create 
the ISAM index, we start with the primary index, with an index entry for the anchor record of each block, or a secondary index, with an 
entry for each record. Call this the base level, or first level, of the index. We now create a second level index containing an index entry 
for the anchor record of each block of the first-level index. This is called an indexed sequential file, or an ISAM file. This technique 
works as well on secondary keys, except that the first level is now much larger. 

B-trees (Bayer trees)
Given an odd integer order, p, a B-tree of order p is an ordered tree in which each node has at most p tree pointers, and p-1 key values. In 
addition, all but the top node has at least (p-1)/2 key values.

To add a new value we use the "push-up" algorithm: we add the new value to the appropriate leaf block. If there is room, we are done. If 
not, this means the leaf block now has p key values. We split the leaf block into two of size (p-1)/2 and push up the middle value to the 
parent block. The parent block may now also have to be split.

Query processing
To implement record selection (SQL where clauses), we can use

• Linear search: we read each disk block once. 
• Binary search: this is an option if the selection condition is an equality test on a key attribute, and the file is ordered by 

that attribute. 
• Primary index: same requirement as above, plus we need an index 
• Hash search: equality comparison on any attribute for which we have a hash index (need not be a key attribute) 
• Primary index and ordered comparison: use the index to find all departments with dnumber > 5 
• B-tree index 

To implement joins, we have:

Book example, EN6 p 690-693: Suppose we have 6,000 employee records in 2,000 blocks, and 50 departments in 10 blocks. We have 
indexes on both tables. The employee.ssn index takes 4 accesses, and the dept.dnumber index takes 2. 

1. Nested-loop join: this is where we think of a for-loop:
    for (e in employee) {
       for (d in department) {
          if (e.dno = d.dnumber) print(e,d);
       }
    }

This is quadratic. If we go through the employee table record by record, that amounts to 2,000 block accesses. For each employee record 
the loop above would go through all 10 blocks of departments; that's 6,000 × 10 = 60,000 blocks. Doing it the other way, we go through 
10 blocks of departments, and, for each department record, we search 2,000 blocks of employees for 50×2,000 = 100,000 block accesses.

However, note that we can also do this join block-by-block on both files. Done this way, the number of block accesses is 2,000 × 10 = 
20,000 blocks. 

Performance improves rapidly if we can keep the smaller table entirely in memory: we then need only 2,010 block accesses! 

2. Index join: if we have an index on one of the attributes, we can use it:
    for (e in employee) {
       d = lookup(department, e.ssn);
       if (d != null) print(e,d);
    }

Note that any index will do, but that this may involve retrieving several disk blocks for each e and will almost certainly involve retrieving 
at least one disk block (from department) for every e in employee. It may or may not be better than Method 1. Consider the first query. 
Suppose we have a primary index on department.dno that allows us to retrieve a given department in 2 accesses. Then we go through 
6,000 employees and retrieve the department of each; that's 6,000×2 = 12,000 block accesses. Now consider the second query, and 
suppose we can find a given employee in 4 accesses. Then we go through 50 × 4 = 200 block accesses (for every department d, we look 
up d.mgr_ssn in table employee). 

3. Sort-merge join: we sort both files on the attribute in question, and then do a join-merge. This takes a single linear pass, of size the 
number of blocks in the two files put together file. This is most efficient if the files are already sorted, but note that it's still faster than 1 
(and possibly faster than 2) if we have to sort the files. Assume both tables are sorted by their primary key, and assume we can sort in 
with N log(N) block accesses, where N is the number of blocks in the file. Then query 1 requires us to sort table employee in time 
2,000×11 = 22,000; the actual merge time is much smaller. Query 2 requires us to sort table department in time 10×4 = 40; the merge then 
takes ~2,000 blocks for the employee table. 

4. Partition-hash join: Let the relations (record sets) be R and S. We partition both files into Ri = {r in R | hash(r) = i}. Now we note that 
the join R  S is simply the disjoint union of the Ri  Si. In most cases, either Ri or Si will be small enough to fit in memory. ⋈ ⋈

The join selection factor is the fraction of records that will participate in the join. In query 2 above, 
    select * from department d, employee e where d.mgr_ssn = e.ssn
all departments will be involved in the join, but almost no employees. So we'd rather go through the departments, looking up managing 
employees, rather than the other way around. 

In the most common case of joins, the join field is a foreign key in one file and a primary key in the other. Suppose we keep all files 
sorted by their primary key. Then for any join of this type, we can traverse the primary-key file block by block; for each primary-key 
value we need to do a lookup of the FK attribute in the other file. This would be method 2 above; note that we're making no use of the 
primary index.

Transactions
A transaction is a set of operations, which we can idealize as read(X), write(X), which at the end we either commit (save) or 
rollback/abort (discard). 

Abstract transactions: operations are read(X) and write(X), for X a field/record/block/table. 
two example transactions. 



    T1: read(X), write(X), read(Y), write(Y)
    T2: read(X), write(X)

Ideally, we execute the transactions one at a time, with no overlap. In practice, because of the considerable I/O-wait for disk retrieval, we 
cannot afford that. Transactions will overlap. We need to figure out how to arrange for this to happen safely. Two problems:

• Lost Update (T1 writes X, T2 then overwrites X) 
• Dirty Read w Abort (T1 writes X, T2 reads X, T1 aborts)

The ACID test
This is commonly described as the following set of features.

• Atomicity: either all steps of a transaction are performed, or none are. We either commit the entire thing or rollback 
completely.

• Consistency preservation: the individual transaction shoud preserve database consistency and database invariants
• Isolation: transactions should appear to be executing in isolation (ideally they appear to be executing serially)
• Durability: committed transactions survive DB crashes

Transaction schedules
Transaction schedules are lists of read/write operations of each transaction, plus commit/abort. The operations of each individual 
transaction must be in their original order. Example:

T1 T2

read(X)
X = X-N

read(X)
X = X+M

write(X)
read(Y)

write(X)

Y = Y+N
write(Y)

Schedule:   read1(X), read2(X), write1(X), read1(Y), write2(X), write1(Y), commit1, commit2

Two operations is a schedule conflict (where the word is to be taken as indicating potential conflict) if:

1. They belong to different transactions
2. They access the same data item (eg X)
3. At least one of the operations is a write() 

For example, in the schedule above, r1(X) and w2(X) conflict. So do r2(X) and w1(X). These do not conflict: r1(X) and r2(X), r1(X) and 
w1(X).

Conflicting operations are those where interchanging the order can result in a different outcome. A conflict is read-write if it involves a 
read(X) in one transaction and write(X) in the other, and write-write if it involves two transactions each doing write(X). A complete 
schedule is a total order of all the operations, incuding abort/commits. (The book allows some partial ordering of irrelevant parts). Given 
a schedule S, the committed projection C(S) is those operations of S that are part of transactions that have committed. This is sometimes 
useful in analysing schedules when transactions are continuously being added.

We can build a transaction precedence graph based on schedule conflict, given a schedule S.  Let us say Ti  Tj if Ti and Tj conflict⟶  
as above, and one of the following occurs:

1. Ti executes write(X) and later Tj executes read(X)
2. Ti executes  read(X) and  later Tj executes write(X)
3. Ti executes write(X) and later Tj executes write(X) 

Recoverable and nonrecoverable schedules
Given two transactions T and T', we say T reads from T', or T depends on T', if T' does a write(X) and then later T does a read(X) (this is 
Case 1 of T' T above) Thus, the outcome of T may depend on the (at least in part) earlier T'. ⟶

A schedule is recoverable if no transaction T can commit until all T' where T reads from T' have already committed. Otherwise a 
schedule is nonrecoverable. If T reads from T', then if T' aborts, T must abort too.  So T waits to commit until T' commits. Given a 
recoverable schedule, we never have to abort a committed transaction. This is, in practice, an essential rule.

Consider the following modification of the schedule above:
    Schedule2: read1(X), read2(X), write1(X), read1(Y), write2(X), commite2, write1(Y), commit1. 
This is recoverable even though there is a risk of lost update. But now consider
    Schedule3: r1(X), w1(X), r2(X), r1(Y), w2(X), c2, abort1             nonrecoverable: T2 reads X from T1 but T2 commits first
    Schedule4: r1(X),  w1(X), r2(X), r1(Y), w2(X), w1(Y), c1, c2;    recoverable because T2 waited to commit until T1 did

Though recoverability implies no committed transaction needs to be rolled back, we still may have cascading rollback. A schedule is 
said to avoid cascading rollback if every transaction T only reads items that were earlier written by committed transactions. In this case, 
an abort of some other transaction will not cause T to abort.  We can achieve this in schedules 3 and 4 by delaying read2(X) until after 
commit1. 

Serializability
The ideal situation with transactions is that they are executed serially, but that is too inefficient. Instead, we look for schedules that are in 
some sense equivalent to a serial schedule. A schedule is serializable if it is equivalent to a serial schedule. For equivalence, we usually 
use conflict equivalence. Two schedules are conflict-equivalent if the order of any two conflicting operations is the same in both 
schedules. 

Conflict-serializability algorithm

Build the transaction precedence (directed) graph above. If the graph has no cycles, it is conflict-serializable. Do a topological sort (ie 
find a total order of the nodes consistent with the Ti Tj ordering); the original schedule is conflict-equivalent to the schedule of⟶  
executing the transactions in that order.

The actual algorithm is as follows: first, find all Ti that do not have any predecessors, ie Tk with Tk Ti. Do these first, and remove all⟶  
Ti Tj links. Now repeat, until there are no more nodes. If at some stage there are no Ti without predecessors, then there must be a⟶  
cycle.


	Database Final Exam Notes
	SQL
	Functional Dependencies and Normalization
	Normal Forms and Normalization
	First Normal Form
	Second Normal Form 
	Third Normal Form

	Normalization
	Boyce-Codd Normal Form
	File organizations
	Hashing as file organization
	Extendible Hashing

	Ch 18: indexing
	Clustering index
	Secondary Indexes

	Hashing in Indexes
	ISAM Indexes
	B-trees (Bayer trees)
	Query processing
	Transactions
	The ACID test
	Transaction schedules
	Recoverable and nonrecoverable schedules
	Serializability
	Conflict-serializability algorithm


